1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
3 years ago
14

QUESTION 3

Physics
2 answers:
Sindrei [870]3 years ago
6 0

6. The answer is false

hope this helps

ValentinkaMS [17]3 years ago
5 0
3 is 3, 4 is 3, 5 is 3, 6 is false, 7 is true, 8 is false, 9 is false, 10 is 3
You might be interested in
A pump, submerged at the bottom of a well that is 35 m deep, is used to pump water uphill to a house that is 50 m above the top
seropon [69]

Answer:

(a) i. The minimum work required to pump the water used per day is

291.85 kJ

ii. The minimum power rating of the pump is 40.53 Watts

(b) i. The flow velocity at the house when a faucet in the house is open where the diameter of the pipe is 1.25 cm is 2.87 m/s

ii. The pressure at the well when the faucet in the house is open is

837.843 kPa.

Explanation:

We note the variables of the question as follows;

Depth of well = 35 m deep

Height of house above the top of the well = 50 m

Density of water = 1000 kg/m³

Volume of water pumped per day = 0.35 m³

Duration of pumping of water per day = 2 hours

(a) i. We note that the energy required to pump the water is equivalent to the potential energy gained by the water at the house. That is

Energy to pump water = Potential Energy = m·g·h

Where:

m = Mass of the water

g = Acceleration due to gravity

h = Height of the house above the bottom of the well

Therefore,

Mass of the water = Density of the water × Volume of water pumped

= 1000 kg/m³ × 0.35 m³ = 350 kg

Therefore P.E. = 350 × 9.81 × (50 + 35) = 291847.5 J

Work done = Energy = 291847.5 J

Minimum work required to pump the water used per day = 291847.5 J

= 291.85 kJ

ii. Power is the rate at which work is done.

Power = \frac{Work}{Time}

Since the time available to pump the water each day is 2 hours or 7200 seconds, therefore we have

Power  = 291847.5 J/ 7200 s = 40.53 J/s or 40.53 Watts

(b)

i. If the velocity in the 3.0 cm pipe is 0.5 m/s

Then we have the flow-rate as Q = v₁ ×A₁

Where:

v₁ = Velocity of flow in the 3.0 cm pipe = 0.

A₁ = Cross sectional area of 3.0 cm pipe

As the flow rate will be constant for continuity, then the flow-rate at the faucet will also be equal to Q

That is Q = 0.5 m/s × π × (0.03 m)²/4 =  3.5 × 10⁻⁴ m³/s

Therefore the velocity at the faucet will be given by

Q = v₂ × A₂

∴ v₂ = Q/A₂

Where:

v₂ = velocity at the house the where the diameter of the pipe is 1.25 cm

A₂ = Cross sectional area of 1.25 cm pipe = 1.23 × 10⁻⁴ m²

Therefore v₂ = (3.5 × 10⁻⁴ m³/s)/(1.23 × 10⁻⁴ m²) = 2.87 m/s

ii. The pressure at the well is given by Bernoulli's equation,

P₁ + 1/2·ρ·v₁² + ρ·g·h₁ = P₂ + 1/2·ρ·v₂² + ρ·g·h₂

If h₁ is taken as the reference point, then h₁ = 0 m

Also since P₂ is opened to the atmosphere, we take P₂ = 0

Therefore

P₁ + 1/2·ρ·v₁² + 0 = 0 + 1/2·ρ·v₂² + ρ·g·h₂

P₁ + 1/2·ρ·v₁²  =  1/2·ρ·v₂² + ρ·g·h₂

P₁ =  1/2·ρ·v₂² + ρ·g·h₂ - 1/2·ρ·v₁²  

= 1/2 × 1000 × 2.87² + 1000 × 9.81 × 85 - 1/2 × 1000 × 0.5²

= 837843.45 Pa = 837.843 kPa

8 0
3 years ago
Neon has 10 electrons; two in the inner level and 8 in its outermost level. Will neon form bonds with other atoms?​
Lana71 [14]

Answer:

no

Explanation:

this is because its valency shell is full so it wont want any other electrons in its valence shell.

6 0
3 years ago
Can plz anyone solve this​
neonofarm [45]

Answer:

1 Ohm

Explanation:

Resistance: Voltage/Current

R: 1.5/ 1.5 = 1 Ohm

6 0
3 years ago
According to this perspective, our personality is due to past, unresolved conflicts
lyudmila [28]

Answer: Correct, but I do not understand the question here. Yes, our personality is due to past unresolved conflicts. During my middle years, I was developing BPD without even knowing it, but that time period was very difficult. Now it is much less severe, however the wound remains unhealed.

5 0
3 years ago
When this current is closed which way does the current flow
Anastaziya [24]
Well, Godess, that's not a simple question, and it doesn't have
a simple answer.

When the switch is closed . . .

"Conventional current" flows out of the ' + ' of the battery, through R₁ ,
then through R₂ , then through R₃ .  It piles up on the right-hand side of
the capacitor (C).  It repels the ' + ' charges on the left side of 'C', and
those flow into the ' - ' side of the battery.  So the flow of current through
this series circuit is completely clockwise, around toward the right. 

That's the way the first experimenters pictured it, that's the way we still
handle it on paper, and that's the way our ammeters display it.

BUT . . .

About 100 years after we thought that we completely understand electricity,
we discovered that the little tiny things that really move through a wire, and
really carry the electric charge, are the electrons, and they carry NEGATIVE
charge.  This turned our whole picture upside down.

But we never changed the picture !  We still do all of our work in terms of
'conventional current'.  But the PHYSICAL current ... the actual motion of
charge in the wire ... is all exactly the other way around.

In your drawing ... When the switch is closed, electrons flow out of the 
' - ' terminal on the bottom of the battery, and pile up on the left plate of
the 'C'.  They repel electrons off of the right-side of 'C', and those then
flow through R₃ , then through R₂ , then through R₁ , and finally into the
' + ' terminal on top of the battery.

Those are the directions of 'conventional' current and 'physical' current
in all circuits.

In the circuit of YOUR picture that you attached, there's more to the story:

Battery current can't flow through a capacitor.  Current flows only until
charges are piled up on the two sides of 'C' facing each other, and then
it stops.

Wait a few seconds after you close the switch in the picture, and there is
no longer any current in the loop.

To be very specific and technical about it . . .

-- The instant you close the switch, the current is

       (battery voltage) / (R₁ + R₂ + R₃)        amperes

but it immediately starts to decrease.

--  Every  (C)/((R₁ + R₂ + R₃)  seconds after that, the current is

                  e⁻¹  =  about  36.8 %

less than it was that same amount of time ago.

Now, are you glad you asked ?
4 0
4 years ago
Other questions:
  • The work function for a photosensitive metal is 1.5 eV. The metal is illuminated with a light of wavelength 500 nm. Find: (a) ma
    13·1 answer
  • the skate shop owner wants 30 percent of each order to include longboards. he wants to know how many longboards to order out of
    6·2 answers
  • How can I put contour plowing in a sentence
    12·1 answer
  • At what height is an object that has a mass of 50kg, if its gravitational
    6·1 answer
  • The mass of an object on earth is 20 kg what will be the mass of that object on moon? And why? ​
    10·1 answer
  • If a ball is thrown vertically upward with a velocity of 160 ft/s, then its height after t seconds is s = 160t − 16t^2.
    12·1 answer
  • An airplane is flying at an elevation of 6 miles on a flight path that will take it directly over a radar tracking station. Let
    6·1 answer
  • What provides evidence that has helped earth scientists determine the age of the earth more precisely?
    14·1 answer
  • At the end of an amusement park ride, it is desirable to bring a gondola to a stop without having the acceleration exceed 3 g. I
    7·1 answer
  • Would young rocks be found near a volcano?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!