Velocity is d/t distance over time. Increase velocity (speed) decrease. Increase d velocity increases.
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Answer:
t= 27.38 mins [this the time taken by the enzyme to hydrolyse 80% of the fat present]
Explanation:given values
Half life of lipase t_1/2 = 8 min x 60s/min = 480 s
Rate constant for first order reaction
k_d = 0.6932/480 = 1.44 x 10^-3 s-1
Initial fat concentration S_0 = 45 mol/m3 = 45 mmol/L
rate of hydrolysis Vm0 = 0.07 mmol/L/s
Conversion X = 0.80
Final concentration S = S_0(1-X) = 45 (1-0.80) = 9 mol/m3
K_m = 5mmol/L
time take is given by
![t= -\frac{1}{K_d}ln[1-\frac{K_d}{V_m_0}(k_mln\frac{s_0}{s}+(s_0-s))]](https://tex.z-dn.net/?f=t%3D%20-%5Cfrac%7B1%7D%7BK_d%7Dln%5B1-%5Cfrac%7BK_d%7D%7BV_m_0%7D%28k_mln%5Cfrac%7Bs_0%7D%7Bs%7D%2B%28s_0-s%29%29%5D)
all values are given and putting these value we get
t=1642.83 secs
which is equal to
t= 27.38 mins [this the time taken by the enzyme to hydrolyse 80% of the fat present]