Answer:

Explanation:
A charge located at a point will experience a zero electrostatic force if the resultant electric field on it due to any other charge(s) is zero.
is located at the origin. The net force on it will only be zero if the resultant electric field intensity due to
and
at the origin is equal to zero. Therefore we can perform this solution without necessarily needing the value of
.
Let the electric field intensity due to
be +
and that due to
be -
since the charge is negative. Hence at the origin;

From equation (1) above, we obtain the following;

From Coulomb's law the following relationship holds;

where
is the distance of
from the origin,
is the distance of
from the origin and k is the electrostatic constant.
It therefore means that from equation (2) we can write the following;

k can cancel out from both side of equation (3), so that we finally obtain the following;

Given;

Substituting these values into equation (4); we obtain the following;


<span>One leg is = 12 m, and the other leg is 16 m. </span>
Answer:
a) The rotational inertia when it passes through the midpoints of opposite sides and lies in the plane of the square is 16.8 kg m²
b) I = 50.39 kg m²
c) I = 16.8 kg m²
Explanation:
a) Given data:
m = 0.98 kg
a = 4.14 * 4.14
The moment of inertia is:

For 4 particles:

b) Distance from top left mass = x = a/2
Distance from bottom left mass = x = a/2
Distance from top right mass = x = √5 (a/2)
The total moment of inertia is:

c)

Answer:
208.33 W
141.26626 seconds
Explanation:
E = Energy = 
t = Time taken = 8 h
m = Mass = 2000 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height of platform = 1.5 m
Power is obtained when we divide energy by time

The average useful power output of the person is 208.33 W
The energy in the next part would be the potential energy
The time taken would be

The time taken to lift the load is 141.26626 seconds