Answer:
λ = 5.656 x 10⁻⁷ m = 565.6 nm
Explanation:
Using the formula of fringe spacing from the Young's Double Slit experiment, which is given as follows:

where,
λ = wavelength = ?
Δx = fringe spacing = 1.6 cm = 0.016 m
L = Distance between slits and screen = 4.95 m
d = slit separation = 0.175 mm = 0.000175 m
Therefore,

<u>λ = 5.656 x 10⁻⁷ m = 565.6 nm</u>
<span>Work is required to pull a nucleon out of an atomic nucleus. It has more mass outside the nucleus.</span>
Answer:
d. It is equal to the component of the gravitational force acting down the ramp.
Explanation:
The stationary crate is inclined at an angle with the horizontal. The Recall, Frictional Force is any Force that opposes motion.
Because the Force of Friction that is opposing the motion of the crate along the inclination side.
Therefore this Frictional force is balanced or equal to the force that is driving the inclined force.
Hence Frictional Force is equal to the Gravitational Force that is acting in the ramp, that is why the crate is stationery.
Answer:
get it done for free on www.brainly.com
Explanation: