Answer:
The acceleration of the satellite is 
Explanation:
The acceleration in a circular motion is defined as:
(1)
Where a is the centripetal acceleration, v the velocity and r is the radius.
The equation of the orbital velocity is defined as
(2)
Where r is the radius and T is the period
For this particular case, the radius will be the sum of the high of the satellite (
) and the Earth radius (
) :


Then, equation 2 can be used:
⇒ 


Finally equation 1 can be used:

Hence, the acceleration of the satellite is 
Answer:
This shows inertia because inertia is an object's resistance to change in motion. When the person (imma call them a she) who pulled the chair from under the guy did that, the chair was the one affected by the force of the girl, not the guy. The guy continued heading in the direction he was originally going, which was down.
At least, that's about how I would answer this question.
The dens or the odontoid process of the axis or the second cervical spine forms a pivot point with the atlas or the first cervical vertebrae that is responsible for the nodding and the rotational movements of the head. This is reinforced by ligaments and the atlanto-occipital joint that allows the head to make a nodding or up and down movement on the vertebral column.