1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
2 years ago
7

Sammy feels an ocean breeze as he plays volleyball at the beach. Why do ocean winds or sea breezes blow toward shore during the

day? Question 2 options: Air over the beach heats up, rises and is replaced by ocean air. Earth's rotation causes air to blow toward land. he energy of the ocean storms push air toward shore. Ocean air is less dense, so it rises to replace air over the land.
Physics
1 answer:
DedPeter [7]2 years ago
4 0

The heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises and the cooler air from the sea moves in to replace the risen air. The correct answer is option A

There will be heat transfer from a region of higher temperature to the region of lower temperature. But in the case of land and sea breeze, the transfer of heat are the result of convectional current in nature. Because the land is a better absorber of heat and also has a lower specific heat capacity compare to sea, during the day, the heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises.

The cooler air from the sea moves in to replace the risen air.

Why do ocean winds or sea breezes blow toward shore during the day ? It is because air over the beach heats up, rises and is replaced by ocean air.

Therefore, option A is correct

Learn more here : brainly.com/question/1114842

You might be interested in
A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated a
wariber [46]
<h2>Answer:</h2>

0.46Ω

<h2>Explanation:</h2>

The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;

E = V + Ir                      --------------------(a)

Where;

I = current flowing through the circuit

But;

V = I x Rₓ                    ---------------------(b)

Where;

Rₓ = effective or total resistance in the circuit.

<em>First, let's calculate the effective resistance in the circuit:</em>

The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.

Let;

R₁ = resistance in the first bulb

R₂ = resistance in the second bulb

Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;

P = \frac{V^{2} }{R}

=> R = \frac{V^{2} }{P}             -------------------(ii)

Where;

P = Power of the bulb

V = voltage across the bulb

R = resistance of the bulb

To get R₁, equation (ii) can be written as;

R₁ = \frac{V^{2} }{P}    --------------------------------(iii)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iii) as follows;

R₁ = \frac{12.0^{2} }{4}

R₁ = \frac{144}{4}

R₁ = 36Ω

Following the same approach, to get R₂, equation (ii) can be written as;

R₂ = \frac{V^{2} }{P}    --------------------------------(iv)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iv) as follows;

R₂ = \frac{12.0^{2} }{4}

R₂ = \frac{144}{4}

R₂ = 36Ω

Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;

\frac{1}{R_{X} } = \frac{1}{R_1} + \frac{1}{R_2}       -----------------(v)

Substitute the values of R₁ and R₂ into equation (v) as follows;

\frac{1}{R_X} = \frac{1}{36} + \frac{1}{36}

\frac{1}{R_X} = \frac{2}{36}

Rₓ = \frac{36}{2}

Rₓ = 18Ω

The effective resistance (Rₓ) is therefore, 18Ω

<em>Now calculate the current I, flowing in the circuit:</em>

Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;

11.7 = I x 18

I = \frac{11.7}{18}

I = 0.65A

<em>Now calculate the battery's internal resistance:</em>

Substitute the values of E = 12.0, V = 11.7V and I = 0.65A  into equation (a) as follows;

12.0 = 11.7 + 0.65r

0.65r = 12.0 - 11.7

0.65r = 0.3

r = \frac{0.3}{0.65}

r = 0.46Ω

Therefore, the internal resistance of the battery is 0.46Ω

5 0
3 years ago
Read 2 more answers
(I) A novice skier, starting from rest, slides down an icy frictionless 8.0° incline whose vertical height is 105 m. How fast is
Vlad1618 [11]

Answer:

v = 45.37 m/s

Explanation:

Given,

angle of inclination = 8.0°

Vertical height, H  = 105 m

Initial K.E. = 0 J

Initial P.E. = m g H

Final PE = 0 J

Final KE = \dfrac{1}{2}mv^2

Using Conservation of energy

KE_i + PE_i + KE_f + PE_f

0 + m g H = \dfrac{1}{2}mv^2 + 0

v = \sqrt{2gH}

v = \sqrt{2\times 9.8 \times 105}

v = 45.37 m/s

Hence, speed of the skier at the bottom is equal to v = 45.37 m/s

3 0
3 years ago
A wave has a wavelength of 4.9 m and a velocity of 9.8 m/s. The medium through which this wave is traveling is then heated so th
garri49 [273]

Answer:

the wavelength is 9.8 meters

Explanation:

We can use the relationship:

Velocity = wavelenght*frequency.

Initially we have:

wavelenght = 4.9m

velocity = 9.8m/s

then:

9.8m/s =  4.9m*f

f = 9.8m/s/4.9m =  2*1/s

now, if the velocity is doubled and the frequency remains the same, we have:

2*9.8m/s = wavelenght*2*1/s

wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m

6 0
3 years ago
Read 2 more answers
Two forces, F⃗ 1F→1F_1_vec and F⃗ 2F→2F_2_vec, act at a point,F⃗ 1F→1F_1_vec has a magnitude of 8.80 NN and is directed at an an
castortr0y [4]

Answer:

  • Fx = -9.15 N
  • Fy = 1.72 N
  • F∠γ ≈ 9.31∠-10.6°

Explanation:

You apparently want the sum of forces ...

  F = 8.80∠-56° +7.00∠52.8°

Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...

  f∠α = (-f·cos(α), -f·sin(α))

This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.

  = -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))

  ≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)

  ≈ (-9.15309, 1.71982)

The resultant component forces are ...

  • Fx = -9.15 N
  • Fy = 1.72 N

Then the magnitude and direction of the resultant are

  F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)

  F∠γ ≈ 9.31∠-10.6°

4 0
3 years ago
An electron with a speed of 1.7 × 107 m/s moves horizontally into a region where a constant vertical force of 4.9 × 10-16 N acts
Alex Ar [27]

Answer:

 y = 77.74 10⁻⁵ m

Explanation:

For this exercise we can use Newton's second law

        F = m a

        a = F / m

        a = 4.9 10⁻¹⁶ / 9.1 10⁻³¹

        a = 0.538 10¹⁵ m / s

This is the vertical acceleration of the electron.

Now let's use kinematics to find the time it takes to move the

         x= 29 mm = 29 10⁻³ m

On the x axis

            v = x / t

            t = x / v

            t = 29 10⁻³ / 1.7 10⁷

            t = 17 10⁻¹⁰ s

Now we can look for vertical distance at this time.

            y = v_{oy} t + ½ a t²

            y = 0 + ½ 0.538 10¹⁵ (17 10⁻¹⁰)²

            y = 77.74 10⁻⁵ m

3 0
3 years ago
Read 2 more answers
Other questions:
  • anthony is learning about electric circuits. he has started building a circuit shown below. which of the following items should
    9·1 answer
  • Someone please help me with this question
    8·1 answer
  • Where can electromagnetic waves travel that mechanical waves do not
    12·1 answer
  • Question 1 of 10
    6·2 answers
  • A closely wound, circular coil with radius 2.50 cmcm has 740 turns. Part A What must the current in the coil be if the magnetic
    12·1 answer
  • A 2 kg block is pushed against a spring (k = 400 N/m), compressing it 0.3 m. When the block is released, it moves along a fricti
    12·1 answer
  • Explain the meaning of the error​
    8·1 answer
  • PLEASE SEE MY QUESTIONS UNDER MY PROFILE AND ANSWER THEM, I REALLY NEED HELP THANK YOU!
    11·2 answers
  • The newton is defined as the:
    7·2 answers
  • Elizabeth has two different electromagnets. Both electromagnets are connected to the same power source and are made of the same
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!