The electric field generated by a point charge is given by:
where
is the Coulomb's constant
Q is the charge
r is the distance from the charge
We want to know the net electric field at the midpoint between the two charges, so at a distance of r=5.0 cm=0.05 m from each of them.
Let's calculate first the electric field generated by the positive charge at that point:
where the positive sign means its direction is away from the charge.
while the electric field generated by the negative charge is:
where the negative sign means its direction is toward the charge.
If we assume that the positive charge is on the left and the negative charge is on the right, we see that E1 is directed to the right, and E2 is directed to the right as well. This means that the net electric field at the midpoint between the two charges is just the sum of the two fields:
The number we need in order to answer the question belongs in the space between the words "is" and "of". You left that blank blank, so there really isn't any question here to answer.
HOWEVER ... the refractive index of a medium can never be less than 1.0 , so we know for sure that <em>choice-a can't be</em> the correct answer.
I think through convection I forget. Plus its enclosed (and, well closed)
A free electron is one which has become detached from a covalent bond between two atoms and is able to move around from atom to atom and possibly take part in electric current flow.
According to another source this is what I got
<span>0.735 J ( Ep-potential energy, m-mass,g-gravitational acceleration = 9.81m/s², h-height; Ep = m * g * h; Ep = 0.0300 kg * 9.81 m/s² * 2.5 m )
</span>Hope it helps