Answer:
This will require 266.9 of heat energy.
Explanation:
To calculate the energy required to raise the temperature of any given substance, here's what you require:The mass of the material, m The temperature change that occurs, ΔT The specific heat capacity of the material,
c
(which you can look up). This is the amount of heat required to raise 1 gram of that substance by 1°C.
Here is a source of values of
c for different substances:
Once you have all that, this is the equation:
Q=m×c×ΔT(Q is usually used to symbolize that heat required in a case like this.)For water, the value of c is 4.186g°C So, Q=750×4.186×85=266=858=266.858
Answer:
<h3>The answer is 0.47 kg</h3>
Explanation:
The mass of the object given it's momentum and velocity can be found by using the formula

where
p is the momentum
v is the velocity
We have

We have the final answer as
<h3>0.47 kg</h3>
Hope this helps you
The correct choice is
D. 22 Hz and 42 Hz.
In fact, the beat frequency is given by the difference between the frequencies of the two waves:

In this problem, the beat frequency is
, therefore the only pair of frequencies that gives a difference equal to 20 Hz is
D. 22 Hz and 42 Hz.
Weight = (mass) x (gravity)
If you plan to sell these things on Earth, then the acceleration of gravity in the neighborhood of your drive-throughs will be 9.81 m/s².
Weight of each sandwich = (0.1 kg) x (9.81 m/s²).
Weight of each sandwich = 0.981 Newton.
This is only 1.9% less than 1 even Newton.
You should start by setting up one restaurant in New York, one in Chicago, one in LA, and maybe one in Miami or Tulsa. Sell it with a different name in each place, and see which name sells best.
You might want to try calling it
-- Isaac's burger
-- Gravity grub
-- Prism Patty
-- Mass 'o Meat
-- Unit-wich
and see if anything catches on.
I think I'd simply call it a "Newton Unit".
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>