This is a statement but yes a star forms inside nebulae which are gigantic clouds of gas. stars form inside as the gases own gravity pulls it together after which it becomes large enough to perform fusion and become a star.
Answer:
sorry in my sense, an experiment once only changes one variable and need a control setup for experimental setup to make sure is fair test
Weight = (mass) x (gravity)
120 N = (mass) x (9.8 m/s²)
Mass = (120 N) / (9.8 m/s²)
Mass = 12.24 kg (B)
Answer:
3. 0.5 sec.
Explanation:
A bullet fired horizontally follows a projectile motion, which consists of two independent motions:
- A horizontal motion with constant speed
- A vertical motion with constant acceleration, g = 9.8 m/s^2, towards the ground
The time taken for the bullet to reach the ground can be calculated just by considering the vertical motion:

where y is the vertical position at time t, h is the initial height, and
is the initial vertical velocity of the bullet.
Since the bullet is fired horizontally,
. So the equation becomes

And the time that the bullet takes to reach the ground can be found by requiring y=0 and solving for t:

As we can see, in this equation there is no dependance on the initial speed of the bullet: therefore, if the bullet is fired still horizontally but with a different speed, it will still take the same time (0.5 s) to reach the ground.
Answer:
The correct answer is t = 0.92s
Explanation:
Initial velocity v0 = 3.0 m/s
Displacement Δy = ?
Acceleration a = -9.8m/s2
Final velocity v = -6.0m/s
Time t=? Target unknown
We can use the kinematic formula missing Δy to solve for the target unknown t:
V=v0+at
We can rearrange the equation to solve to t:
V-v0=at
t= v-v0/a
Substituting the known value into the kinematic formula gives:
t= (-6.0m/s)-(3.0m/s)
————————————
-9.8m/s2
= -9m/s
—————-
-9.8m/s2
=0.92s