The answer is B because if you use process of elimination, you find that A is invalid because Venus is the second planet. C is out because Mars is the 4th planet. D is out because we are nowhere near the Andromeda Galaxy. We are millions of light years away.
1. Frequency: 
The energy given is the energy per mole of particles:

1 mole contains a number of Avogadro of particles,
, equal to
particles
So, by setting the following proportion, we can calculate the energy of a single photon:

This is the energy of a single photon; now we can calculate its frequency by using the formula:

where
is the Planck's constant
f is the photon frequency
Solving for f, we find

2. Wavelength: 
The wavelength of the photon is given by the equation:

where

is the speed of the photon (the speed of light). Substituting,

The headlamp's concave mirror is open on one end, and the light bulb's filament is placed at or near the focus. (Sorry if this is Wrong)
The pressure increase at the bottom of the pool after they enter the pool and float is 106.103 Pa.
<h3>What is absolute pressure?</h3>
Absolute pressure is the force that exists in a space when there is no matter present, or when there is a perfect vacuum. This absolute zero serves as the baseline for measurements in absolute pressure. The measurement of barometric pressure is the greatest illustration of an absolute referenced pressure. In order to determine absolute pressure, a complete vacuum is used. In contrast, gauge pressure is the amount of pressure that is measured in relation to atmospheric pressure, also referred to as barometric pressure.
given,
diameter = 6 m
depth = h = 1.5 m
Atmospheric pressure = P₀ = 10⁵ Pa
a) absolute pressure
P = P₀ + ρ g h
P = 10⁵ + 1000 x 10 x 1.5
P = 1.15 x 10⁵ Pa
b) When two person enters into the pool,
mass of the two person = 150 Kg
weight of water level displaced exists equal to the weight of person.




Area of pool 


Height of the water rise



P = ρ g h
P = 1000 x 10 x 0.0106
P = 106.103 Pa
To learn more about absolute pressure refer to:
brainly.com/question/17200230
#SPJ4
Answer:
The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Explanation:
Given;
intensity of light, I = 1 kW/m²
The radiation pressure of light is given as;

I kW = 1000 J/s
The energy flux density = 1000 J/m².s
The speed of light = 3 x 10⁸ m/s
Thus, the radiation pressure of the light is calculated as;

Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.