1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
13

What is the kind of energy that comes from movement?

Physics
2 answers:
Sedbober [7]3 years ago
8 0
The movement is motion energy

Brainiest plz
Sergio [31]3 years ago
4 0

Answer:

motion energy

Explanation:

motion wnergy is the sum of potential and kinetic energy

You might be interested in
How many quantum numbers are used to describe the energy state of an electron in an atom
matrenka [14]
We have Four (4). quantum number used in description of the energy state of an electron.
6 0
3 years ago
What crisis is occurring in California?
nlexa [21]
Hey there!

Option A

A climate crisis is occurring in California where sudden forest fires occur due to this .
3 0
2 years ago
Suppose an object is launched from a point 320 feet above the earth with an initial velocity of 128 ft/sec upward, and the only
Ne4ueva [31]

Answer:

(a)Therefore the highest altitude attained by the object is =576 ft .

(b)Therefore the object takes 6 sec to fall to the ground.

Explanation:

Initial velocity: Initial velocity is a velocity from which an object starts to move.

u is usually used for notation of initial notation.

Final velocity: Final velocity is a velocity of an object after certain second from starting.

The final velocity is denoted by v.

Acceleration: The difference of final velocity and initial velocity per unit time

The S.I unit of acceleration is m/s².

(a)

Given that u= 128 ft\sec and g = 32 ft/sec².

At highest point the velocity of the object is 0 i.e v=0

Since the displacement is opposite to the gravity.

Therefore acceleration( a)= -g = -32 ft/sec².

To find the time this to happen we use the following formula

v=u+at

Here v=0

⇒0=128+(-32) t

⇒32t=128

⇒t = 4 sec

To determine the height we use the following formula

s=ut+\frac{1}{2} at^2

\Rightarrow s= (128\times4)+\frac{1}{2}\times (-32) \times4^2

⇒s= 256 ft

Therefore the highest altitude attained by the object is =(320+256)ft=576 ft .

(b)

At the highest point the velocity of the object is 0.

so u=0. a=g= 32 ft/sec²  [ since the direction of gravity and the displacement are same] s= 576 ft

To determine the time to fall we use the following formula

s=ut+\frac{1}{2} at^2

\Rightarrow 576 = (0\times t)+\frac{1}{2} \times 32 \times t^2

\Rightarrow 16\times t^2=576

\Rightarrow t^2=\frac{576}{16}

\Rightarrow t^2=36

⇒t=6 sec

Therefore the object takes 6 sec to fall to the ground.

8 0
3 years ago
A 38.5 kg man is in an elevator
Vika [28.1K]
I’m not too sure but I think it’s 8,91 m/s2
3 0
3 years ago
A body with initial velocity 8.0 m/s moves along a straight line with constant acceleration and travels
Aleksandr [31]

Answer:

<em>(a) The average velocity is 16 m/s</em>

<em>(b) The acceleration is 0.4 m/s^2</em>

<em>(c) The final velocity is 24 m/s</em>

Explanation:

<u>Constant Acceleration Motion</u>

It's a type of motion in which the velocity (or the speed) of an object changes by an equal amount in every equal period of time.

Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, final speed is calculated as follows:

v_f=v_o+at\qquad\qquad [1]

The distance traveled by the object is given by:

\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]

(a) The average velocity is defined as the total distance traveled divided by the time taken to travel that distance.

We know the distance is x=640 m and the time taken t= 40 s, thus:

\displaystyle \bar v=\frac{x}{t}=\frac{640}{40}=16

The average velocity is 16 m/s

Using the equation [1] we can solve for a:

\displaystyle a=\frac{v_f-v_o}{t}

(c) From [2] we can solve for a:

\displaystyle a= 2\frac{x-v_ot}{t^2}

Since vo=8 m/s, x=640 m, t=40 s:

\displaystyle a= 2\frac{640-8\cdot 40}{40^2}=0.4

The acceleration is 0.4 m/s^2

(b) The final velocity is calculated by [1]:

v_f=8+0.4\cdot 40

v_f=8+16=24

The final velocity is 24 m/s

3 0
3 years ago
Other questions:
  • an object of mass 6000 kg rests on the flatbed of a truck. it is held in place by metal brackets that can exert a maximum horizo
    6·1 answer
  • Which of the following statements is true?
    10·1 answer
  • A car travels from point a to point b, moving in the same direction but with a non-constant speed. the first half of the distanc
    15·2 answers
  • The angular speed of the rotor in a centrifuge increases from 420 to 1420 rad/s in a time of 5.00 s. (a) Obtain the angle throug
    7·2 answers
  • The large intestine ends in the ___.
    8·2 answers
  • Your average speed on the first half of a car trip is 69.0 km/h. How fast do you have to drive on the second half of the trip to
    11·1 answer
  • Please match the correct letter to the scenario. ***********Worth 50 POINTS*******WILL MARK BRAINLIEST
    6·1 answer
  • The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N
    6·1 answer
  • What is a charge? how objects can be charged? short answer pls​
    9·1 answer
  • A conductor carrying a current I = 15.0 A is directed along the positive x axis and perpendicular to a uniform magnetic field. A
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!