1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
14

A car covers 72 kilometers in the first hour of its journey. In the next hour, it covers 90 kilometers. What is the amount of wo

rk done by the car? The total mass of the car, including its passengers, is 2.5 × 103 kilograms.
Physics
1 answer:
Nina [5.8K]3 years ago
4 0

The work done is 2.8125 \times 10^{5} \mathrm{J}

Work Done = Change in Kinetic Energy (ΔKE)

<u>Explanation</u>

In first 1 hour it travels 72 km

So, Velocity = \frac{\text { distance }}{\text { time }}=\frac{72}{1} k m / h=72 \mathrm{km} / \mathrm{h}=\frac{72000}{3600} \mathrm{m} / \mathrm{s}=20 \mathrm{m} / \mathrm{s}

or, Initial Velocity (u) = 20 m/s

Similarly for the next hour it covers 90 km

So, Velocity = \frac{\text { distance }}{\text { time }}=\frac{90}{1} k m / h=90 \mathrm{km} / \mathrm{h}=\frac{90000}{3600} \mathrm{m} / \mathrm{s}=25 \mathrm{m} / \mathrm{s}

or, Final Velocity (v) = 20 m/s

Work done = Change in Kinetic Energy (ΔKE)

Work done = ΔKE = \frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}

ΔKE = \frac{1}{2} m\left(v^{2}-u^{2}\right)=\frac{1}{2} \times\left(2.5 \times 10^{3}\right) \times\left(25^{2}-20^{2}\right)

= \frac{2500 \times(625-400)}{2}=\frac{2500 \times 225}{2}=\frac{562500}{2}= 281250 joule  

= 2.8125 \times 10^{5} \mathrm{J}

You might be interested in
Explain what 'vibrating' means.
drek231 [11]

Answer:

Vibrating means to move quickly to and fro.

Explanation:

6 0
3 years ago
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to grea
Alexxx [7]

Answer:

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

Explanation:

To answer this question, let's analyze the problem. Let's use conservation of energy

Starting point. Highest point

          Em₀ = U = m g h

Final point. To get off the ramp

          Em_f = K = ½ mv² + ½ I w²

notice that we include the kinetic energy of translation and rotation

         

energy is conserved

        Em₀ = Em_f

        mgh = ½ m v² +1/2 I w²

angular and linear velocity are related

         v = w r

         w = v / r

we substitute

          mg h = ½ v² (m + I / r²)

          v² = 2 gh   \frac{m}{m+ \frac{I}{r^2} }

          v² = 2gh    \frac{1}{1 + \frac{I}{m r^2} }

this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)

         v² = v₀² + 2 a L

where L is the length of the plane

         v² = 2 a L

         a = v² / 2L

we substitute

         a = g \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

let's use trigonometry

         sin θ = h / L

         

we substitute

         a = g sin θ   \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

the moment of inertia of each object is tabulated, let's find the acceleration of each object

a) Hollow cylinder

      I = m r²

we look for the acerleracion

      a₁ = g sin θ    \frac{1}{1 + \frac{mr^2 }{m r^2 } }1/1 + mr² / mr² =

      a₁ = g sin θ    ½

b) solid cylinder

       I = ½ m r²

       a₂ = g sin θ  \frac{1}{1 + \frac{1}{2}  \frac{mr^2}{mr^2} } = g sin θ   \frac{1}{1+ \frac{1}{2} }

       a₂ = g sin θ   ⅔

c) hollow sphere

     I = 2/3 m r²

     a₃ = g sin θ   \frac{1}{1 + \frac{2}{3} }

     a₃ = g sin θ \frac{3}{5}

d) solid sphere

     I = 2/5 m r²

     a₄ = g sin θ  \frac{1 }{1 + \frac{2}{5} }

     a₄ = g sin θ  \frac{5}{7}

We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)

a) a₁ = g sin θ ½ = g sin θ      \frac{105}{210}

b) a₂ = g sinθ ⅔ = g sin θ     \frac{140}{210}

c) a₃ = g sin θ \frac{3}{5}= g sin θ       \frac{126}{210}

d) a₄ = g sin θ \frac{5}{7} = g sin θ      \frac{150}{210}

the order of acceleration from lower to higher is

   

     a₁ <a₃ <a₂ <a₄

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

8 0
3 years ago
Two protons are released from rest when they are 0.720 nm apart. For related problem-solving tips and strategies, you may want t
Gnesinka [82]

Answer:

a) Speed of the electrons at maximum speed = (1.384 × 10⁴) m/s

The maximum speed occurs at the point where all of the initial potential energy is converted into kinetic energy.

b) Maximum acceleration of the protons = (2.660 × 10¹⁷) m/s²

The maximum acceleration occurs at the minimum distance apart for the two protons.

Explanation:

The maximum speed occurs when all the potential energy of the protons has been converted to kinetic energy.

The potential energy between the two protons at the instant of release is given by

U = (kq₁q₂/r)

k = Coulomb' s constant = (8.988 × 10⁹) Nm²/C²

q₁ = q₂ = charge on a proton = q = (1.602 × 10⁻¹⁹) C

r = separation between the two protons = 0.72 nm = (7.2 × 10⁻¹⁰) m

U = (kq²/r) = [(8.988 × 10⁹) × (1.602 × 10⁻¹⁹)²] ÷ (7.2 × 10⁻¹⁰) = (3.204 × 10⁻¹⁹) N/m or Joules

At the maximum speeds, the two protons will not possess any potential Energy, only kinetic energy.

The sum of kinetic and potential energies is always constant for the system

(Initial Kinetic Energy) + (Initial Potential Energy) = (Kinetic Energy at maximum speed) + (Potential Energy at maximum speed)

Initial Kinetic Energy of the system = 0 J (Since both protons were intially at rest)

Initial Potential Energy = (3.204 × 10⁻¹⁹) J

Kinetic Energy at maximum speed = Sum of the kinetic energies of the protons at this point = (½mv²) + (½mv²) = (mv²) J (Since theu are both protons, they have the same mass and the same speed at maximum speed)

Potential Energy at maximum speed = 0 J

0 + (3.204 × 10⁻¹⁹) = mv² + 0

mv² = (3.204 × 10⁻¹⁹)

m = mass of a proton = (1.673 × 10⁻²⁷) kg

v = speed of each of the protons at maximum speed = ?

v = √[(3.204 × 10⁻¹⁹) ÷ m]

v = √[(3.204 × 10⁻¹⁹) ÷ (1.673 × 10⁻²⁷)]

v = √(1.915 × 10⁸) = 13,838.8 m/s = (1.384 × 10⁴) m/s

b) Since the two protons repel each other and force of repulsion reduces as the dI stance between the protons increases, the maximum acceleration occurs at the minimum distance apart for the two protons.

Force of repulsion acting on each proton is given through Coulomb's law as

F = (kq₁q₂/r²)

And the force acting on each proton is obtainable using Newton's law that

F = ma

So, the acceleration of each proton at any time is obtainable through a relation of these 2 formulas.

ma = (kq₁q₂/r²)

a = (kq₁q₂/r²m)

k = Coulomb' s constant = (8.988 × 10⁹) Nm²/C²

q₁ = q₂ = charge on a proton = q = (1.602 × 10⁻¹⁹) C

r = separation between the two protons = 0.72 nm = (7.2 × 10⁻¹⁰) m

m = mass of a proton = (1.673 × 10⁻²⁷) kg

a = [(8.988 × 10⁹) × (1.602 × 10⁻¹⁹)²] ÷ [(7.2 × 10⁻¹⁰)² × (1.673 × 10⁻²⁷)]

a = (2.660 × 10¹⁷) m/s²

Hope this Helps!!!

5 0
3 years ago
If a sheep is running at 3.0 m/s with a mass of 60 kg what is its kinetic energy​
borishaifa [10]

Answer:270joules

Explanation:KE = 1/2mv^2

KE = 1/2(60kg)(3.0)^2 = 270 Joules

8 0
3 years ago
Why football players boots have spikes their sole<br>Give short and sweet answer​
Marizza181 [45]

Answer:

it helps with balance and speed.

"The football shoes have spikes or studs because the studs or spikes provides larger frictional force than normal shoes while running on the grass. The studs prevents player from slipping on the grass and help to run faster and change direction quickly without slipping"

3 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is best described as a synthesis reaction? (2 points) 2HgO → 2Hg + O2 AgNO3 + NaCl → AgCl + NaNO3 HCl + N
    13·2 answers
  • Please help me. Thanks
    6·2 answers
  • A toroid having a square cross section, 5.00 cm on a side, and an inner radius of 15.0 cm has 500 turns and carries a current of
    13·1 answer
  • Why is it important for scientist to use the international system of units
    15·1 answer
  • A spring has a spring constant of 53N/m. How much elastic potential energy is stored in the spring in the spring when it is comp
    11·1 answer
  • Ii.
    5·1 answer
  • 1. A stone of mass 0.8 kg is attached to a 0.9 m long string. The string will break if the tension exceeds 60 N. The stone is wh
    11·1 answer
  • Thank you if you them
    14·1 answer
  • Hii please help i’ll give brainliest!!
    12·2 answers
  • Find the magnitude of the sum<br> of these two vectors:<br><br> 101 m<br> 60.0 °<br> 85.0 m
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!