Answer:
B) 0.230 M
Explanation:
The first step is to <u>balance the reaction</u> between the Ferrous ion and the permanganate ion:

Then we have to <u>calculate the moles</u> of
:



Then using the <u>molar ratio</u> we can find the moles of
:

Finally we can calculate the molarity:

Answer:
Laura can look for a transparent and translucent liquid and hence determine which beaker has water and which has solution
Explanation:
Pure water is a compound that is transparent in color. However, a solution is a liquid mixture comprising of a solvent or a solute. The atoms of solute occupy space between the atoms of solvent and hence are said to dissolve in it. Water can be a solvent.
Thus, if the beaker has a transparent liquid in it, then it would be pure water while a beaker having a translucent liquid, then it would be a solution
Metalloids are metallic-looking brittle solids<span> that are either semiconductors or exist in semiconducting forms, and have amphoteric or weakly acidic oxides. Typical </span>nonmetals<span> have a </span>dull<span>, coloured or colourless </span>appearance<span>; are </span>brittle<span> when </span>solid<span>; are poor conductors of heat and electricity; and have acidic oxides.</span>
Answer:
3.47 ×10^-10
Explanation:
The equation of the reaction is 2Cr3+(aq) + Pb(s)------->2Cr2+(aq) + Pb2+(aq)
A total of two moles of electrons were transferred in the process. The chromium was reduced while the lead was oxidized. Hence the lead species will constitute the oxidation half equation and the chromium will constitute the reduction half equation.
E°cell = E°cathode - E°anode
E°cathode = -0.41 V
E°anode = -0.13 V
E°cell = -0.41 -(-0.13) = -0.28 V
From
E°cell = 0.0592/n log K
n= 2, K= the unknown
-0.28 = 0.0592/2 log K
log K = -0.28/0.0296
log K = -9.4595
K = Antilog ( -9.4595)
K= 3.47 ×10^-10