Answer:
6.12 L
Explanation:
Given that,
Initial volume, V₁ = 5 L
Initial temperature, T₁ = 7.0°C = 343 K
Final temperature, T₂ = 147°C = 420 K
We need to find its new volume. The relation between volume and temperature is given by :

So, the new volume is 6.12 L.
Answer : The correct option is, (D) 3600 kJ
Explanation :
Mass of octane = 75 g
Molar mass of octane = 114.23 g/mole
Enthalpy of combustion = -5500 kJ/mol
First we have to calculate the moles of octane.

Now we have to calculate the heat released in the reaction.
As, 1 mole of octane released heat = -5500 kJ
So, 0.656 mole of octane released heat = 0.656 × (-5500 kJ)
= -3608 kJ
≈ -3600 kJ
Therefore, the heat released in the reaction is 3600 kJ
Answer:
1st Blank: <em>1 Co</em>
2nd Blank:<em> 2 Na2S</em>
3rd Blank:<em> 4 Na</em>
4th Blank:<em> 1 CoS2</em>
Explanation:
<em>Trust me</em>
PH = -log10 [H+]. So anwer 2 pH
<span>In the Bohr model electrons in atoms can occupy allowed orbits where they do not emit energy. Exchange of energy with the surrounding environment occurs only when an electron "jumps" from an orbit to another. Hope this answers the question. Have a nice day.</span>