Answer:
Mass of Ca in sample, Mass of Br in sample, Number of moles of Ca in sample, Number of moles of Br in sample, Mass or moles of element other than Ca or Br in sample
Explanation:
The AP Classroom will not count your answer to this question as correct unless it includes at least one of the answers listed above. If you say that theanswer to this question is density, it will be marked as incorrect, I found that out the hard way when I used the answers that brainly gave me.
Good luck,
I applaud you for using the sources avalible to you, which is /definetly not/ cheeting.
Answer:
Mass = 2.77 g
Explanation:
Given data:
Mass of HCl = 2 g
Mass of CaCl₂ produced = ?
Solution:
Chemical equation:
2HCl + Ca → CaCl₂ + H₂
Number of moles of HCl:
Number of moles = mass / molar mass
Number of moles = 2 g/ 36.5 g/mol
Number of moles = 0.05 mol
now we will compare the moles of HCl with CaCl₂.
HCl : CaCl₂
2 : 1
0.05 : 1/2×0.05 = 0.025 mol
Mass of CaCl₂:
Mass = number of moles × molar mass
Mass = 0.025 mol × 110.98 g/mol
Mass = 2.77 g
Answer:
50
Explanation:
We will need a balanced equation with masses, moles, and molar masses of the compounds involved.
1. Gather all the information in one place with molar masses above the formulas and masses below them.
Mᵣ: 30.01 32.00 46.01
2NO + O₂ ⟶ 2NO₂
Mass/g: 80.00 16.00
2. Calculate the moles of each reactant

3. Calculate the moles of NO₂ we can obtain from each reactant
From NO:
The molar ratio is 2 mol NO₂:2 mol NO

From O₂:
The molar ratio is 2 mol NO₂:1 mol O₂

4. Identify the limiting and excess reactants
The limiting reactant is O₂ because it gives the smaller amount of NO₂.
The excess reactant is NO.
5. Mass of excess reactant
(a) Moles of NO reacted
The molar ratio is 2 mol NO:1 mol O₂

(b) Mass of NO reacted

(c) Mass of NO remaining
Mass remaining = original mass – mass reacted = (80.00 - 30.01) g = 50 g NO
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital