Enzymes are organic catalysts
and catalysts generally increase rate of reaction by lowering activation energy
C is the answer
Answer:
The molar mass in g/mol is 121.4 g/m
Explanation:
Let's apply the Ideal Gases Law to solve this:
P . V = n . R. T
V = 125 mL → 0.125L
P = 754 Torr
760 Torr ___ 1 atm
754 Torr ____ (754 / 760) = 0.992 atm
Moles = Mass / Molar mass
0.992 atm . 0.125L = (0.495 g / MM) . 0.082 . 371K
(0.992 atm . 0.125L) / (0.082 . 371K) = (0.495 g / MM)
4.07x10⁻³ mol = 0.495 g / MM
MM = 0.495 g / 4.07x10⁻³ mol → 121.4 g/m
Answer:
B
[(0.75)^3(0.25)]÷[(0.50)^2(0.75)]
Explanation:
toppr dot com
The rate of entropy change:
The rate of entropy change of the working fluid during the heat addition process is 3 kW/K
What is the Carnot cycle?
- The Carnot Cycle is a thermodynamic cycle made up of reversible isothermal expansion, adiabatic expansion, isothermal compression, and adiabatic compression processes in succession.
- The ratio of the heat absorbed to the temperature at which the heat was absorbed determines the change in entropy.
The entropy of a system:
The rate of heat addition is expressed as,
Q = 
The entropy of a system is a measure of how disorderly a system is getting. The rate of entropy generation during heat addition is,

Calculation:
<u>Given:</u>
= 400K
= 1600K
W = 3600 kW
Put all the values in the above equation, and we get,
=
= 3 kW/K
The rate of entropy change is 3 kW/K
Learn more about the Carnot cycle here,
brainly.com/question/13002075
#SPJ4
Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.