Answer:
Model
Explanation:
A model of anything is something you make to represent it in it's physical world form
Answer:
140 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 3 atm
- Initial temperature of the gas (T₁): 280 K
- Final pressure of the gas (P₂): 1.5 atm
- Final temperature of the gas (T₂): ?
Step 2: Calculate the final temperature of the gas
We have a gas whose pressure is reduced. If we assume an ideal behavior, we can calculate the final temperature of the gas using Gay-Lussac's law.
T₁/P₁ = T₂/P₂
T₂ = T₁ × P₂/P₁
T₂ = 280 K × 1.5 atm/3 atm = 140 K
Answer:
Choice A: Approximately
joules.
Explanation:
Apply the famous mass-energy equivalence equation to find the energy that correspond to the
kilograms of mass.
,
where
stands for energy,
stands for mass, and
is the speed of light in vacuum.
The speed of light in vacuum is a constant. However, finding the right units for this value can simplify the calculations a lot. What should be the unit of
?
The mass given is in the appropriate SI unit:
Mass is in kilograms.
Thus, proceed with the speed of light in SI units. The SI unit for speed is meters per second. For the speed of light,
.
Apply the mass-energy equivalence:
.
The unit of energy is not in joules. Don't be alerted. Consider the definition of a joule of energy. One joule is the work done on an object when a force of one newton acts on the object in the direction of the force through the distance of one meter. (English Wikipedia.)
.
However, a force of one newton is defined as the force required to accelerated an object with a mass of one kilogram (not gram) at a rate of one meter per second squared. (English Wikipedia.)
.
In other words, the mass defect here is also
.
Answer:
B. Ca(OH)2(s)+CO2(aq)-CaCO3(s)+H2O(aq)