Answer:
5
Step-by-step explanation:
mark me brainliest plz
i think the answer is c :)
The generic equation for a linear function can be expressed in the slope intercept form f(x) = mx + b, where m is the slope and b is the y intercept. For this problem we can first find the equation of the line. Then we substitute x = 7 to get the f(x) value, which is n at the point x = 7.
To find the equation of the linear function we first find the slope. Slope is defined as the change in f(x) divided by the change in x. As we are given a linear function, the slope at every point is the same. We can pick any two points known to find the slope.
Let's pick (3, 7) and (9, 16). The slope m is m = (16-7)/(9-3) = 9/6 = 3/2.
Now that we have the slope, we can plug in the slope and one of the points to find b. Let's use the point (3, 7).
f(x) = mx + b
7 = (1/2)(3) + b
b = 11/2
Now we can write the equation
f(x) = (1/2)x + 11/2
Plugging in x = 7 we find that f(7) = 9. n = 9
Answer:
The correct answer would be chart A.
Step-by-step explanation:
<span>In logic, the converse of a conditional statement is the result of reversing its two parts. For example, the statement P → Q, has the converse of Q → P.
For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the converse is 'if a figure is a parallelogram, then it is rectangle.'
As can be seen, the converse statement is not true, hence the truth value of the converse statement is false.
</span>
The inverse of a conditional statement is the result of negating both the hypothesis and conclusion of the conditional statement. For example, the inverse of P <span>→ Q is ~P </span><span>→ ~Q.
</span><span><span>For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the inverse is 'if a figure is not a rectangle, then it is not a parallelogram.'
As can be seen, the inverse statement is not true, hence the truth value of the inverse statement is false.</span>
</span>
The contrapositive of a conditional statement is switching the hypothesis and conclusion of the conditional statement and negating both. For example, the contrapositive of <span>P → Q is ~Q → ~P. </span>
<span><span>For the given statement, 'If a figure is a rectangle, then
it is a parallelogram.' the contrapositive is 'if a figure is not a parallelogram,
then it is not a rectangle.'
As can be seen, the contrapositive statement is true, hence the truth value of the contrapositive statement is true.</span> </span>