The one created by mandeleev is not in order of increasing the atomic number
Answer:
Please find the complete question in the attached file.
Explanation:
Answer:
Protium
Explanation:
Isotopes -
For some elements , there are various forms possible , which have different number of neutron and same number of protons , are referred to as the isotopes .
The three isotopes possible for the element hydrogen are -
Protium , Deuterium and Tritium .
Where ,
- Protium has one electron , one proton and zero neutron.
- Deuterium has one electron , one proton and one neutron.
- Tritium has one electron , one proton and two neutron.
The most abundant isotope observed is Protium , with 99.98% abundance.
Hello!
To find electron configuration for Idoine we need to understand the following steps:
- Finding the Atom's Atomic Number (tells us the specific number of electrons)
- Determining the Charge of the Atom
- Understanding the orbitals (Set S [Contains 2], P [Contains 3, Holds 6], D [Contains 5, Holds 10], F [Contains 7, Holds 14], and there are some theoritical ones.) [Overall the sets go SPDFGHIK
- Understanding notations in configuartion. The notations display the number of electrons in the atom and set.
In this case, for Iodine. If we follow these rules we can see that the electron configuration is [Kr] 4d^10 5s^2 5p^5. We use Krytpon in front because that is the last full and stable noble gas before this particular element. Atoms are just trying to be stable so the goal is to achieve that full shell.
Answer:
Option 3. The catalyst does not affect the enthalpy change (
) of a reaction.
Explanation:
As its name suggests, the enthalpy change of a reaction (
) is the difference between the enthalpy of the products and the reactants.
On the other hand, a catalyst speeds up a reaction because it provides an alternative reaction pathway from the reactants to the products.
In effect, a catalyst reduces the activation energy of the reaction in both directions. The reactants and products of the reaction won't change. As a result, the difference in their enthalpies won't change, either. That's the same as saying that the enthalpy change
of the reaction would stay the same.
Refer to an energy profile diagram. Enthalpy change of the reaction
measures the difference between the two horizontal sections. Indeed, the catalyst lowered the height of the peak. However, that did not change the height of each horizontal section or the difference between them. Hence, the enthalpy change of the reaction stayed the same.