Answer:
9^8
Step-by-step explanation:
9²•9⁶ = 9^(2+6) = 9^8
A set of data has a normal distribution with a mean of 5.1 and a standard deviation of 0.9. Find the percent of data between 4.2 and 5.1.
Answer: The correct option is B) about 34%
Proof:
We have to find 
To find
, we need to use z score formula:
When x = 4.2, we have:


When x = 5.1, we have:


Therefore, we have to find 
Using the standard normal table, we have:
= 

or 34.13%
= 34% approximately
Therefore, the percent of data between 4.2 and 5.1 is about 34%
Tnemos el sisema de ecuaciones:

Podemos resolverlo por eliminación sumando ambas ecuaciones y eliminando y. Asi podemos resolver para x:

Ahora podemos resolver para y con cualquiera de las dos ecuaciones:

Respuesta: x=-3, y=0
Answer:
C. 15.6
Step-by-step explanation:
Perimeter of WXYZ = WX + XY + YZ + ZW
Use the distance formula,
to calculate the length of each segment.
✔️Distance between W(-1, 1) and X(1, 2):
Let,


Plug in the values





✔️Distance between X(1, 2) and Y(2, -4)
Let,


Plug in the values





✔️Distance between Y(2, -4) and Z(-2, -1)
Let,


Plug in the values





✔️Distance between Z(-2, -1) and W(-1, 1)
Let,


Plug in the values





✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56
≈ 15.6
Answer:
First, you need to know how to multiply two monomials together. A monomial is a one term polynomial.
2x × 5x, 2x²y × 3xy², and ab² × 4b³ are examples of products of monomials.
To multiply monomials together, multiply the number parts together and multiply the variables together.
Here are the 3 examples above solved:
2x × 5x = 10x²
2x²y × 3xy² = 6x³y³
ab² × 4b³ = 4ab^5
To multiply two polynomials together, multiply every term of the first polynomial by every term of the second polynomial. then combine like terms.
Example:
(2x² + 3x - 8)(4x³ - 5x²) =
= 2x² × 4x³ + 2x² × (-5x²) + 3x × 4x³ + 3x × (-5x²) - 8 × 4x³ - 8 × (-5x²)
= 8x^5 - 10x^4 + 12x^4 - 15x³ - 32x³ + 40x²
= 8x^5 + 2x^4 - 47x³ + 40x²
This is a lot of material in very little space. You need to start with simple examples of multiplication of 2 monomials. Then practice multiplying a monomial by a binomial. Then practice with polynomials of more terms.