Our current list has 11!/2!11!/2! arrangements which we must divide into equivalence classes just as before, only this time the classes contain arrangements where only the two As are arranged, following this logic requires us to divide by arrangement of the 2 As giving (11!/2!)/2!=11!/(2!2)(11!/2!)/2!=11!/(2!2).
Repeating the process one last time for equivalence classes for arrangements of only T's leads us to divide the list once again by 2
Answer:he will save 100 $
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given that:

for 
That means, angle
is in the 3rd quadrant.
To find:
Value of cot(t)
Solution:
First of all, let us recall what trigonometric ratios are positive and what trigonometric ratios are negative in 3rd quadrant.
In 3rd quadrant, tangent and cotangent are positive.
All other trigonometric ratios are negative.
Let us have a look at the following identity:

here, 
So, 

But, angle
is in 3rd quadrant, so value of

Answer:
35
Step-by-step explanation:
bundles tundra dismay chard bff dusk m u