Answer:
3.34×10^-6m
Explanation:
The shear modulus can also be regarded as the rigidity. It is the ratio of shear stress and shear strain
can be expressed as
shear stress/(shear strain)
= (F/A)/(Lo/ . Δx)
Stress=Force/Area
The sheear stress can be expressed below as
F Lo /(A *Δx)
Where A=area of the disk= πd^2/4
F=shearing force force= 600N
Δx= distance
S= shear modulus= 1 x 109 N/m2
Lo= Lenght of the cylinder= 0.700 cm=7×10^-2m
If we make Δx subject of the formula we have
Δx= FLo/(SA)
If we substitute the Area A we have
Δx= FLo/[S(πd^2/4]
Δx=4FLo/(πd^2 *S)
If we input the values we have
(4×600×0.7×10^-2)/10^9 × 3.14 ×(4×10^-2)^2
= 3.35×10^-6m
Therefore, its shear deformation is 3.35×10^-6m
A=area of the disk= πd^2/4
= [3.142×(4×10^-2)^2]/4
During a car crash, energy is transferred from the vehicle to whatever it hits, be it another vehicle or a stationary object. ... The object that was struck will either absorb the energy thrust upon it or possibly transfer that energy back to the vehicle that struck it.
I HOPE THIS HELPSS???
Mark me brainliest
Answer:
Anti clockwise
hope it helps u
please mark me brailliest
The linear velocity of a rotating object is the product of the angular velocity and the radius of the circular motion. Angular velocity is the rate of the change of angular displacement of a body that is in a circular motion. It is a vector quantity so it consists of a magnitude and direction. From the problem, the angular velocity is 5.9 rad per second and the radius is given as 12 centimeters. We calculate as follows:
Linear velocity = angular velocity (radius)
Linear velocity = 5.9 (12 ) = 70.8 cm / s
The linear velocity of the body in motion is 70.8 centimeters per second or 0.708 meters per second.