Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius
A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
A) red light
red lights are an example of an electromagnetic wave. visible lights are the only electromagnetic waves we can actually see on the spectrum. red, in particular has the biggest wavelength.
b) ocean waves
ocean waves are not an electromagnetic wave. in fact, it’s a mechanical wave. electromagnetic waves can travel through a vacuum, that is empty space, but mechanical waves cannot.
c) sound waves
sound waves are also not an electromagnetic wave. it’s a mechanical wave. you cannot hear electromagnetic waves.
d) earthquakes
an earthquake is also not an example of electromagnetic waves. it’s a mechanical wave.
hope this helps!
Answer:
2.5 times higher then that on the Earth
Explanation:
Gravity is higher on Jupiter then on Earth because Jupiter is much bigger, because of it's mass compared to Earth the gravity on Jupiter is about 2.4 - 2.5 times higher then Earths surface gravity which means a rock on Jupiter would be around "2.4 - 2.5 times as heavier then it would be on Earth."
Hope this helps.
Answer:
They speed up as temperature increases.
Explanation:
As temperatures increases within a molecule the particles will speed up.