1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
15

Explain the derivation behind the derivative of sin(x) i.e. prove f'(sin(x)) = cos(x)

Mathematics
2 answers:
ziro4ka [17]3 years ago
7 0
1.

f'(\sin x) =  \lim_{h \to 0}  \frac{f(x+h) - f(x)}{h}  =    \lim_{h \to 0}  \frac{\sin(x+h) - \sin(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{2 \sin( \frac{x+h - x}{2}) \cdot \cos( \frac{x+h+x}{2})  }{h} =   \lim_{h \to 0}    \frac{2 \sin( \frac{h}{2}) \cos( \frac{2x+h}{2} ) }{h}   =  \\  \\   = \lim_{h \to 0}     [ \frac{\sin( \frac{h}{2}) }{ \frac{h}{2} }  \cdot  \cos (\frac{2x+h}{2}) ] =   \lim_{h \to 0} [1 \cdot \cos( \frac{2x+h}{2} )  ] =

= \cos( \frac{2x}{2}) = \boxed{\cos x}

2.

f'(\cos x) =  \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =   \lim_{h \to 0}  \frac{\cos(x+h) - \cos(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{x+h+x}{2}) \cdot \sin ( \frac{x+h-x}{2})  }{h}  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{2x+h}{2}) \cdot \sin ( \frac{h}{2})  }{h}  =  \\  \\  =     \lim_{h \to 0}   \frac{-2 \sin ( \frac{2x+h}{2}) }{2}     \cdot  \frac{sin( \frac{h}{2}) }{ \frac{h}{2} }    =   \lim_{h \to 0}  -\sin( \frac{2x+h}{2}) \cdot 1 =

= -\sin(  \frac{2x}{2}) = \boxed{\sin x }

3.

f'(\tan) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x+h-x)}{\cos(x+h) \cdot \cos(x)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(h)}{ \frac{\cos(x+h-x) + \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{\sin(h)}{\cos(h) + \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{\sin(h)}{ \frac{1}{2}h \cdot [\cos(h) + \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \frac{1}{ \frac{1}{2} \cdot (\cos(h) + cos(2x+h) } = 1 \cdot \frac{1}{ \frac{1}{2} \cdot (1+ cos(2x) } = \frac{2}{1 + 2 \cos^{2} - 1 } = \\ \\ = \frac{2}{2 \cos^{2} x} = \boxed{ \frac{1}{\cos^{2}x} }

4.

f'(\cot) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cot(x+h) - \cot(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x - x - h)}{\sin (x+h) \cdot \sin (h)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(-h) }{ \frac{\cos(x+h-x) - \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{-\sin(h)}{\cos(h) - \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{ - \sin(h)}{ \frac{1}{2}h \cdot [\cos(h) - \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{- \sin (h)}{h} \cdot   \frac{1}{ \frac{1}{2} \cdot [\cos(h) - \cos(2x+h)] }  = -1 \cdot  \frac{2}{1 - cos(2x)}  =  \\  \\  = - \frac{2}{1 -1 + 2 \sin^{2}x}  = - \frac{2}{2 \sin^{2} x} = \boxed{- \frac{1}{\sin^{2} x} }
Sever21 [200]3 years ago
6 0
I posted an image instead.

You might be interested in
What is the answer to 90x144?
I am Lyosha [343]
The Answer Is 12,960.
4 0
3 years ago
Find the real solutions of e^3t=100
wel
E^3t=100

ln100=3t

t=(ln100)/3
4 0
3 years ago
I need help
OLEGan [10]

d because 24 dived into 1 956 is 82.5

6 0
3 years ago
Marci and Levi add 113.5 + 22.41. If the whole numbers are added, the sum would be ??
AlexFokin [52]

Answer:

(the real answer would be 135.91) The numbers add (just the whole numbers) would be 135

7 0
3 years ago
0.2(10-5c)=5c-16 halp
iogann1982 [59]

Answer:

c= 3

Step-by-step explanation:

0.2(10 -5c)= 5c -16

<em>Expand</em><em>:</em>

0.2(10) +0.2(-5c)= 5c -16

2 -c= 5c -16

<em>Bring</em><em> </em><em>all</em><em> </em><em>c</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>,</em><em> </em><em>constant</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em>:</em>

5c +c= 2 +16

<em>Simplify</em><em>:</em>

6c= 18

<em>Divide</em><em> </em><em>by</em><em> </em><em>6</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>

c= 18 ÷6

c= 3

5 0
3 years ago
Read 2 more answers
Other questions:
  • Using graph paper, determine the line described by the given point and slope. Click to show the correct graph below. (0, 6) and
    12·1 answer
  • in a certain town, 10% of people commute to work by bicycle. if a person is selected randomly from the town, what are the odds a
    10·1 answer
  • Please Help me with my math I hate functions
    14·1 answer
  • Need help I’m confused question is 7.50 per hour washing cars Graph the relationship between the number of hours Gilbert works a
    15·1 answer
  • The average rate of increase per year?
    13·1 answer
  • Sydney made 21 wooden penguins to sell at a fair. She used 5 pompoms and 4 beads to decorate each penguin.How many pompoms and b
    13·1 answer
  • Find the length of the third side to the nearest thenth
    7·1 answer
  • Can someone help? What’s the answer.
    9·1 answer
  • The surface area of a cylinder is 1 m^2. What would its radius and hight be?
    11·1 answer
  • If Avogadro's number of pennies is divided equally among the 246 million men, women, and children in the United States, how many
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!