1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
15

Explain the derivation behind the derivative of sin(x) i.e. prove f'(sin(x)) = cos(x)

Mathematics
2 answers:
ziro4ka [17]3 years ago
7 0
1.

f'(\sin x) =  \lim_{h \to 0}  \frac{f(x+h) - f(x)}{h}  =    \lim_{h \to 0}  \frac{\sin(x+h) - \sin(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{2 \sin( \frac{x+h - x}{2}) \cdot \cos( \frac{x+h+x}{2})  }{h} =   \lim_{h \to 0}    \frac{2 \sin( \frac{h}{2}) \cos( \frac{2x+h}{2} ) }{h}   =  \\  \\   = \lim_{h \to 0}     [ \frac{\sin( \frac{h}{2}) }{ \frac{h}{2} }  \cdot  \cos (\frac{2x+h}{2}) ] =   \lim_{h \to 0} [1 \cdot \cos( \frac{2x+h}{2} )  ] =

= \cos( \frac{2x}{2}) = \boxed{\cos x}

2.

f'(\cos x) =  \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =   \lim_{h \to 0}  \frac{\cos(x+h) - \cos(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{x+h+x}{2}) \cdot \sin ( \frac{x+h-x}{2})  }{h}  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{2x+h}{2}) \cdot \sin ( \frac{h}{2})  }{h}  =  \\  \\  =     \lim_{h \to 0}   \frac{-2 \sin ( \frac{2x+h}{2}) }{2}     \cdot  \frac{sin( \frac{h}{2}) }{ \frac{h}{2} }    =   \lim_{h \to 0}  -\sin( \frac{2x+h}{2}) \cdot 1 =

= -\sin(  \frac{2x}{2}) = \boxed{\sin x }

3.

f'(\tan) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x+h-x)}{\cos(x+h) \cdot \cos(x)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(h)}{ \frac{\cos(x+h-x) + \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{\sin(h)}{\cos(h) + \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{\sin(h)}{ \frac{1}{2}h \cdot [\cos(h) + \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \frac{1}{ \frac{1}{2} \cdot (\cos(h) + cos(2x+h) } = 1 \cdot \frac{1}{ \frac{1}{2} \cdot (1+ cos(2x) } = \frac{2}{1 + 2 \cos^{2} - 1 } = \\ \\ = \frac{2}{2 \cos^{2} x} = \boxed{ \frac{1}{\cos^{2}x} }

4.

f'(\cot) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cot(x+h) - \cot(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x - x - h)}{\sin (x+h) \cdot \sin (h)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(-h) }{ \frac{\cos(x+h-x) - \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{-\sin(h)}{\cos(h) - \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{ - \sin(h)}{ \frac{1}{2}h \cdot [\cos(h) - \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{- \sin (h)}{h} \cdot   \frac{1}{ \frac{1}{2} \cdot [\cos(h) - \cos(2x+h)] }  = -1 \cdot  \frac{2}{1 - cos(2x)}  =  \\  \\  = - \frac{2}{1 -1 + 2 \sin^{2}x}  = - \frac{2}{2 \sin^{2} x} = \boxed{- \frac{1}{\sin^{2} x} }
Sever21 [200]3 years ago
6 0
I posted an image instead.

You might be interested in
Find the volume of the composite solid.
Sauron [17]

Answer:

2960 ft³

Step-by-step explanation:

Rectangular prism = 12x20x10=2400

Rectangular pyramid = 1/3x12x20x7=560

2400+560=2960

5 0
3 years ago
Find the midpoint between two points on a number line if one of the points is at -7, and the other point is at 12.
frosja888 [35]

Answer:

D

Step-by-step explanation:

The midpoint is the average of the 2 endpoints, that is

midpoint = \frac{-7+12}{2} = \frac{5}{2} = 2.5 → D

3 0
3 years ago
What is the solution to the inequality? −4x − 8 > −20
andre [41]
X < -3 is what the answer is
7 0
3 years ago
Read 2 more answers
What are the steps to divide 36.75 by 3?
Nadya [2.5K]

Answer:

12.25

Step-by-step explanation:

(1): "36.75" was replaced by "(3675/100)".

2 Simplify 147/4

3 147 /4 divided by 3

.....

49/4 which equal 12.25000

5 0
2 years ago
Use the figure to name a plane containing point <br> L.
luda_lava [24]
Put a picture pleasee
5 0
2 years ago
Other questions:
  • Anderson has been saving his earnings from mowing the neighborhood lawns. he has 70 dollars and wants to spend it all on movies.
    5·1 answer
  • PLEASE HELP !!!!
    10·1 answer
  • Consider this system of equations, where function fis quadratic and function g is linear:
    8·1 answer
  • 6x - 9= y y= -3x using the system of linear equation by substitution Help please! This is due really soon
    11·1 answer
  • Find the area of the parallelogram. HELP ASAP!!
    14·2 answers
  • The graph of Fx), shown below, resembles the graph of G(x) = x, but it has
    5·2 answers
  • A. ECONOMICS A sports team sells about
    13·1 answer
  • Marcus can read 126 pages in one hour. How many pages can he read in 15 minutes?
    13·2 answers
  • Job 1 the base pay is 30 and the job pay 150 total for an 8 hour day job 2 y=17x+25 which one pays more
    15·1 answer
  • The sum of two numbers is 45. The larger number is one more than three times the smaller number. What are these numbers?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!