1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
15

Explain the derivation behind the derivative of sin(x) i.e. prove f'(sin(x)) = cos(x)

Mathematics
2 answers:
ziro4ka [17]3 years ago
7 0
1.

f'(\sin x) =  \lim_{h \to 0}  \frac{f(x+h) - f(x)}{h}  =    \lim_{h \to 0}  \frac{\sin(x+h) - \sin(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{2 \sin( \frac{x+h - x}{2}) \cdot \cos( \frac{x+h+x}{2})  }{h} =   \lim_{h \to 0}    \frac{2 \sin( \frac{h}{2}) \cos( \frac{2x+h}{2} ) }{h}   =  \\  \\   = \lim_{h \to 0}     [ \frac{\sin( \frac{h}{2}) }{ \frac{h}{2} }  \cdot  \cos (\frac{2x+h}{2}) ] =   \lim_{h \to 0} [1 \cdot \cos( \frac{2x+h}{2} )  ] =

= \cos( \frac{2x}{2}) = \boxed{\cos x}

2.

f'(\cos x) =  \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =   \lim_{h \to 0}  \frac{\cos(x+h) - \cos(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{x+h+x}{2}) \cdot \sin ( \frac{x+h-x}{2})  }{h}  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{2x+h}{2}) \cdot \sin ( \frac{h}{2})  }{h}  =  \\  \\  =     \lim_{h \to 0}   \frac{-2 \sin ( \frac{2x+h}{2}) }{2}     \cdot  \frac{sin( \frac{h}{2}) }{ \frac{h}{2} }    =   \lim_{h \to 0}  -\sin( \frac{2x+h}{2}) \cdot 1 =

= -\sin(  \frac{2x}{2}) = \boxed{\sin x }

3.

f'(\tan) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x+h-x)}{\cos(x+h) \cdot \cos(x)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(h)}{ \frac{\cos(x+h-x) + \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{\sin(h)}{\cos(h) + \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{\sin(h)}{ \frac{1}{2}h \cdot [\cos(h) + \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \frac{1}{ \frac{1}{2} \cdot (\cos(h) + cos(2x+h) } = 1 \cdot \frac{1}{ \frac{1}{2} \cdot (1+ cos(2x) } = \frac{2}{1 + 2 \cos^{2} - 1 } = \\ \\ = \frac{2}{2 \cos^{2} x} = \boxed{ \frac{1}{\cos^{2}x} }

4.

f'(\cot) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cot(x+h) - \cot(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x - x - h)}{\sin (x+h) \cdot \sin (h)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(-h) }{ \frac{\cos(x+h-x) - \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{-\sin(h)}{\cos(h) - \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{ - \sin(h)}{ \frac{1}{2}h \cdot [\cos(h) - \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{- \sin (h)}{h} \cdot   \frac{1}{ \frac{1}{2} \cdot [\cos(h) - \cos(2x+h)] }  = -1 \cdot  \frac{2}{1 - cos(2x)}  =  \\  \\  = - \frac{2}{1 -1 + 2 \sin^{2}x}  = - \frac{2}{2 \sin^{2} x} = \boxed{- \frac{1}{\sin^{2} x} }
Sever21 [200]3 years ago
6 0
I posted an image instead.

You might be interested in
Find the volume of a square pyramid with base edges of 48 cm and a slant
SOVA2 [1]
The height of this pyramid will be:

√(26^2 - (48/2)^2) = 10cm

So the volume is: V = 1/3 * 48^2 * 10 = 7680 cm^3
4 0
3 years ago
Read 2 more answers
The diagram shows the cross-section of a wall of a cinema. It has to be painted. Work out the area that needs to be painted.
mestny [16]

Answer:

Area = 370 m²

Cost to paint = £105

Step-by-step explanation:

Area of the wall of a cinema hall = Area of a trapezoid (1)+ Area of a rectangle (2) + Area of a trapezoid (3)

Area of a trapezoid = \frac{1}{2}(b_1+b_2)h

where b_1 and b_2 are the parallel sides and h is the distance between these sides.

Area of trapezoid (1) = \frac{1}{2}(11+12)\times 6

                                  = 69 m²

Area of the rectangle (2) = Length × Width

                                         = 12 × 15

                                         = 180 m²

Area of the trapezoid (3) = \frac{1}{2}(12+10)\times 11

                                         = 121 m²

Now area of the wall = 69 + 180 + 121

                                   = 370 m²

One tin covers the area = 25 m²

Number of tins required to paint the wall = \frac{\text{Total area}}{\text{Area covered by one tin}}

= \frac{370}{25}

= 14.8

Therefore, number of tins to be purchased = 15

Cost to paint the complete wall = 15 × £7

                                                       = £105

8 0
3 years ago
Solve the equation<br><br> 1.6=7.6-5(k+1.1)
zepelin [54]
7.6 - 5(k + 1.1) = 1.6

7.6 - 5(k + 1.1) - 7.6 = 1.6 - 7.6

-5(k +1.1) = -6

-5(k + 1.1) -6
-------------- = ---------
-5 -5

k + 1.1 = 6
-----
5

k + 1.1 - 1.1 = 6
----- - 1.1
5

k = 0.1
8 0
3 years ago
As a salesperson for an electronic parts distributor, you are given two options for your salary structure. The first option has
kumpel [21]

Answer:

The amount of sale is approximately 5714.

Step-by-step explanation:

Let x be the sales made that will result to the same salary and let y be the same weekly salary.

We can represent both salaries as follows:

300 + 0.04x = y

100 + 0.075x = y

Subtracting the second equation from the first, we have:

200 – 0.035x = 0

0.035x= 200

x = 200/0.035

x ≈ 5714.

Therefore, the amount of sale is approximately 5714.

3 0
3 years ago
How do you expand 6(x + 3y + 2z)
Nadusha1986 [10]
6x+18y+12z

Hope this helps!
4 0
3 years ago
Other questions:
  • A walffle cone has a height of 7 inches and a diameter of 3 inches. What is the volume of ice cram that can be contained within
    15·1 answer
  • How to solve the problem for this question. A jackets original price is $65.00. It is on sale for 40% off. You have to pay 5% sl
    11·1 answer
  • 1/2,2/5,3/5,3/7 from least to greatest
    11·2 answers
  • saima makes 14 muffins to give to her friends she wants to give 2 muffins to each friends at her party​
    14·1 answer
  • Tino's Pizza charges $9 for a cheese pizza.Eileen has 45$ to buy pizza for the Spanish club.Write and solve an inequality to fin
    10·1 answer
  • Need help on assignment​
    13·1 answer
  • David is looking for the best deal on a laptop that regularly costs $719. Help him compare the price of the laptop at a
    13·1 answer
  • TOT ROLIOS
    15·1 answer
  • Which of the following is a triangle circumscribed by a circle?
    15·2 answers
  • I need to know what the equation is for this graph..
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!