1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
2 years ago
15

Explain the derivation behind the derivative of sin(x) i.e. prove f'(sin(x)) = cos(x)

Mathematics
2 answers:
ziro4ka [17]2 years ago
7 0
1.

f'(\sin x) =  \lim_{h \to 0}  \frac{f(x+h) - f(x)}{h}  =    \lim_{h \to 0}  \frac{\sin(x+h) - \sin(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{2 \sin( \frac{x+h - x}{2}) \cdot \cos( \frac{x+h+x}{2})  }{h} =   \lim_{h \to 0}    \frac{2 \sin( \frac{h}{2}) \cos( \frac{2x+h}{2} ) }{h}   =  \\  \\   = \lim_{h \to 0}     [ \frac{\sin( \frac{h}{2}) }{ \frac{h}{2} }  \cdot  \cos (\frac{2x+h}{2}) ] =   \lim_{h \to 0} [1 \cdot \cos( \frac{2x+h}{2} )  ] =

= \cos( \frac{2x}{2}) = \boxed{\cos x}

2.

f'(\cos x) =  \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =   \lim_{h \to 0}  \frac{\cos(x+h) - \cos(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{x+h+x}{2}) \cdot \sin ( \frac{x+h-x}{2})  }{h}  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{2x+h}{2}) \cdot \sin ( \frac{h}{2})  }{h}  =  \\  \\  =     \lim_{h \to 0}   \frac{-2 \sin ( \frac{2x+h}{2}) }{2}     \cdot  \frac{sin( \frac{h}{2}) }{ \frac{h}{2} }    =   \lim_{h \to 0}  -\sin( \frac{2x+h}{2}) \cdot 1 =

= -\sin(  \frac{2x}{2}) = \boxed{\sin x }

3.

f'(\tan) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x+h-x)}{\cos(x+h) \cdot \cos(x)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(h)}{ \frac{\cos(x+h-x) + \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{\sin(h)}{\cos(h) + \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{\sin(h)}{ \frac{1}{2}h \cdot [\cos(h) + \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \frac{1}{ \frac{1}{2} \cdot (\cos(h) + cos(2x+h) } = 1 \cdot \frac{1}{ \frac{1}{2} \cdot (1+ cos(2x) } = \frac{2}{1 + 2 \cos^{2} - 1 } = \\ \\ = \frac{2}{2 \cos^{2} x} = \boxed{ \frac{1}{\cos^{2}x} }

4.

f'(\cot) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cot(x+h) - \cot(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x - x - h)}{\sin (x+h) \cdot \sin (h)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(-h) }{ \frac{\cos(x+h-x) - \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{-\sin(h)}{\cos(h) - \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{ - \sin(h)}{ \frac{1}{2}h \cdot [\cos(h) - \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{- \sin (h)}{h} \cdot   \frac{1}{ \frac{1}{2} \cdot [\cos(h) - \cos(2x+h)] }  = -1 \cdot  \frac{2}{1 - cos(2x)}  =  \\  \\  = - \frac{2}{1 -1 + 2 \sin^{2}x}  = - \frac{2}{2 \sin^{2} x} = \boxed{- \frac{1}{\sin^{2} x} }
Sever21 [200]2 years ago
6 0
I posted an image instead.

You might be interested in
11. It took Mr. Owen 12 hours to build
Charra [1.4K]

Answer:

3 feet per hours

Step-by-step explanation:

To get unit rate divide foot by hours

\frac{36}{12} = 3

3 0
3 years ago
Read 2 more answers
Solve f 10/f = 36/90 f = ?
Lubov Fominskaja [6]

Answer:

Step-by-step explanation:

6 0
3 years ago
Do you know What is X=9+y-2
Damm [24]

Answer:

Subtract

2

from

9

.

X

=

y

+

7

Step-by-step explanation:

5 0
2 years ago
Solve using the quadratic equation 3x^2 -7x -3=0
strojnjashka [21]

Answer: x=7/6+1/6^85 or x=7/6+−1/6^85

Step-by-step explanation: hope this help

3 0
2 years ago
Write the expression as the sine or cosine of an angle sin(pi/7) cos(x) + cos(pi/7) sin(x)
Natasha_Volkova [10]

Answer:

\sin(\frac{\pi}{7}+x)

Step-by-step explanation:

We are going to use the identity

\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)

because this identities right hand side matches your expression where

a=\frac{\pi}{7} and b=x.

So we have that \sin(\frac{\pi}{7})\cos(x)+\cos(\frac{\pi}{7})\sin(x) is equal to \sin(\frac{\pi}{7}+x).

5 0
3 years ago
Other questions:
  • 18 ÷ x = -2 what does x equal
    5·1 answer
  • PLZZ HELP
    11·2 answers
  • Need lots of help LOTS OF POINTS
    14·2 answers
  • Chef Mario used of a half-gallon of milk for a cake. What fraction of a gallon of milk did he use?
    5·1 answer
  • Morty buys and sells computer parts
    7·1 answer
  • The mean weight of a breed of yearling cattle is 1065 pounds. Suppose that weights of all such animals can be described by the N
    9·1 answer
  • Max observes the zoo and the library from a helicopter flying at a height of 200 times square root of 3 feet above the ground, a
    8·2 answers
  • Which two values of x are roots of the polynomial below?<br>x²-11x+17<br>​
    11·2 answers
  • My question has been up too long lol
    5·1 answer
  • 10. Jim has only $100 to purchase balloons, hats, and cupcakes for a
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!