1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
15

Explain the derivation behind the derivative of sin(x) i.e. prove f'(sin(x)) = cos(x)

Mathematics
2 answers:
ziro4ka [17]3 years ago
7 0
1.

f'(\sin x) =  \lim_{h \to 0}  \frac{f(x+h) - f(x)}{h}  =    \lim_{h \to 0}  \frac{\sin(x+h) - \sin(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{2 \sin( \frac{x+h - x}{2}) \cdot \cos( \frac{x+h+x}{2})  }{h} =   \lim_{h \to 0}    \frac{2 \sin( \frac{h}{2}) \cos( \frac{2x+h}{2} ) }{h}   =  \\  \\   = \lim_{h \to 0}     [ \frac{\sin( \frac{h}{2}) }{ \frac{h}{2} }  \cdot  \cos (\frac{2x+h}{2}) ] =   \lim_{h \to 0} [1 \cdot \cos( \frac{2x+h}{2} )  ] =

= \cos( \frac{2x}{2}) = \boxed{\cos x}

2.

f'(\cos x) =  \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =   \lim_{h \to 0}  \frac{\cos(x+h) - \cos(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{x+h+x}{2}) \cdot \sin ( \frac{x+h-x}{2})  }{h}  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{2x+h}{2}) \cdot \sin ( \frac{h}{2})  }{h}  =  \\  \\  =     \lim_{h \to 0}   \frac{-2 \sin ( \frac{2x+h}{2}) }{2}     \cdot  \frac{sin( \frac{h}{2}) }{ \frac{h}{2} }    =   \lim_{h \to 0}  -\sin( \frac{2x+h}{2}) \cdot 1 =

= -\sin(  \frac{2x}{2}) = \boxed{\sin x }

3.

f'(\tan) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x+h-x)}{\cos(x+h) \cdot \cos(x)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(h)}{ \frac{\cos(x+h-x) + \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{\sin(h)}{\cos(h) + \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{\sin(h)}{ \frac{1}{2}h \cdot [\cos(h) + \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \frac{1}{ \frac{1}{2} \cdot (\cos(h) + cos(2x+h) } = 1 \cdot \frac{1}{ \frac{1}{2} \cdot (1+ cos(2x) } = \frac{2}{1 + 2 \cos^{2} - 1 } = \\ \\ = \frac{2}{2 \cos^{2} x} = \boxed{ \frac{1}{\cos^{2}x} }

4.

f'(\cot) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cot(x+h) - \cot(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x - x - h)}{\sin (x+h) \cdot \sin (h)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(-h) }{ \frac{\cos(x+h-x) - \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{-\sin(h)}{\cos(h) - \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{ - \sin(h)}{ \frac{1}{2}h \cdot [\cos(h) - \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{- \sin (h)}{h} \cdot   \frac{1}{ \frac{1}{2} \cdot [\cos(h) - \cos(2x+h)] }  = -1 \cdot  \frac{2}{1 - cos(2x)}  =  \\  \\  = - \frac{2}{1 -1 + 2 \sin^{2}x}  = - \frac{2}{2 \sin^{2} x} = \boxed{- \frac{1}{\sin^{2} x} }
Sever21 [200]3 years ago
6 0
I posted an image instead.

You might be interested in
URGENT!: Which property justifies this statement? 
MariettaO [177]
The answer to that question is
C. transitive
6 0
3 years ago
How to find the surface area of a prism
Contact [7]

The formula is 2(wl+hl+hw) to calculate surface area fo a rectangular prism.

3 0
3 years ago
M∠IJK=155° and m∠ZJK=35°. Find m/∠IJZ
PtichkaEL [24]
120° because 155-35=120 since IJZ is inside the IJK so you would have to subtract the ZJK from the IJZ.
8 0
3 years ago
A basketball player scored 26 points in one game. In basketball, some baskets are worth 3 points, some are worth 2 points, and f
Vsevolod [243]

Answer:

3 points = 2

2 points = 6

1 point = 8

Step-by-step explanation:

Given that:

Total point scored = 26

Let number of 3 point basket = x

Number of 2 point basket = x + 4

Number of free throws = x + x + 4 = 2x + 4

Hence,

Total 3 points = 3x

Total 2 points 2(x + 4)

Total free throw points = 2x + 4

3x + 2(x + 4) + 2x + 4 = 26

3x + 2x + 8 + 2x + 4 = 26

7x + 12 = 26

7x = 26 - 12

7x = 14

x = 2

Number of 3 points = x = 2

2 points = (x+4) = 2+4 = 6

1 point = (2x+ 4) = 2(2) + 4 = 8

5 0
3 years ago
Read 2 more answers
What is the Equation?​
LiRa [457]

Answer:

y--2=2(x-3)

Step-by-step explanation:

what is the equation about

maybe a slope of a line

8 0
3 years ago
Other questions:
  • What is negative 12 as a fraction
    12·2 answers
  • What is the area of a square with side lengths of 9 feet? 81 ft 81 ft2 36 ft2 36 f
    5·2 answers
  • What type of graph displays information by using a column vertically or horizontally? A) Pictograph B) Scatterplot C) Bar Graph
    12·1 answer
  • 24 percent of the swim team members are new on the team. how many members are new?
    7·1 answer
  • What is the volume of a cone with a height of 9.5 inches and a radius of 8 inches? Cone V = 1 3 Bh 1. Rewrite the formula for th
    9·2 answers
  • The net of a solid figure is shown below: Four squares are shown side by side in a row. The second square has a square above it
    13·1 answer
  • If (2x + 4) - (x + 3) = 15, then x =
    7·1 answer
  • HOW DO YOU GRAPH USING LINER PROBLEMS
    12·2 answers
  • Which of the following is not a form of energy? A. muscle. B. electrical. C. theremal. D. sound
    6·1 answer
  • Find the distance between the points (8,-3) and (2, -3).​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!