1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
15

Explain the derivation behind the derivative of sin(x) i.e. prove f'(sin(x)) = cos(x)

Mathematics
2 answers:
ziro4ka [17]3 years ago
7 0
1.

f'(\sin x) =  \lim_{h \to 0}  \frac{f(x+h) - f(x)}{h}  =    \lim_{h \to 0}  \frac{\sin(x+h) - \sin(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{2 \sin( \frac{x+h - x}{2}) \cdot \cos( \frac{x+h+x}{2})  }{h} =   \lim_{h \to 0}    \frac{2 \sin( \frac{h}{2}) \cos( \frac{2x+h}{2} ) }{h}   =  \\  \\   = \lim_{h \to 0}     [ \frac{\sin( \frac{h}{2}) }{ \frac{h}{2} }  \cdot  \cos (\frac{2x+h}{2}) ] =   \lim_{h \to 0} [1 \cdot \cos( \frac{2x+h}{2} )  ] =

= \cos( \frac{2x}{2}) = \boxed{\cos x}

2.

f'(\cos x) =  \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =   \lim_{h \to 0}  \frac{\cos(x+h) - \cos(x)}{h}  =  \\  \\  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{x+h+x}{2}) \cdot \sin ( \frac{x+h-x}{2})  }{h}  =   \lim_{h \to 0}  \frac{-2 \sin ( \frac{2x+h}{2}) \cdot \sin ( \frac{h}{2})  }{h}  =  \\  \\  =     \lim_{h \to 0}   \frac{-2 \sin ( \frac{2x+h}{2}) }{2}     \cdot  \frac{sin( \frac{h}{2}) }{ \frac{h}{2} }    =   \lim_{h \to 0}  -\sin( \frac{2x+h}{2}) \cdot 1 =

= -\sin(  \frac{2x}{2}) = \boxed{\sin x }

3.

f'(\tan) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x+h-x)}{\cos(x+h) \cdot \cos(x)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(h)}{ \frac{\cos(x+h-x) + \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{\sin(h)}{\cos(h) + \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{\sin(h)}{ \frac{1}{2}h \cdot [\cos(h) + \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \frac{1}{ \frac{1}{2} \cdot (\cos(h) + cos(2x+h) } = 1 \cdot \frac{1}{ \frac{1}{2} \cdot (1+ cos(2x) } = \frac{2}{1 + 2 \cos^{2} - 1 } = \\ \\ = \frac{2}{2 \cos^{2} x} = \boxed{ \frac{1}{\cos^{2}x} }

4.

f'(\cot) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cot(x+h) - \cot(x)}{h} = \\ \\ = \lim_{h \to 0} \frac{ \frac{\sin(x - x - h)}{\sin (x+h) \cdot \sin (h)} }{h} = \lim_{h \to 0} \frac{ \frac{\sin(-h) }{ \frac{\cos(x+h-x) - \cos(x+h+x)}{2} } }{h} =

= \lim_{h \to 0} \frac{ \frac{-\sin(h)}{\cos(h) - \cos(2x+h)} }{ \frac{1}{2}h } = \lim_{h \to 0} \frac{ - \sin(h)}{ \frac{1}{2}h \cdot [\cos(h) - \cos(2x+h)] } = \\ \\ = \lim_{h \to 0} \frac{- \sin (h)}{h} \cdot   \frac{1}{ \frac{1}{2} \cdot [\cos(h) - \cos(2x+h)] }  = -1 \cdot  \frac{2}{1 - cos(2x)}  =  \\  \\  = - \frac{2}{1 -1 + 2 \sin^{2}x}  = - \frac{2}{2 \sin^{2} x} = \boxed{- \frac{1}{\sin^{2} x} }
Sever21 [200]3 years ago
6 0
I posted an image instead.

You might be interested in
What's 2+2 for free brain my lol
navik [9.2K]

Answer:

2 + 2 = 4

lol hope this helps :D

7 0
3 years ago
Read 2 more answers
What is the name of each of the two blue points in the hyperbola below?
Ber [7]
The correct answer is option A
4 0
2 years ago
Pls help, I’ll give you brainly
wel
I think 6 and -8, I am not too positive
3 0
3 years ago
Solve for y. <br> y – (-5) = -7 <br><br> y = 2 <br> y = -12 <br> y = -2 <br> y = 12
s2008m [1.1K]
Y - (-5) = -7
y + 5 = -7
y = -7 - 5
y = - 12 <==
3 0
3 years ago
Read 2 more answers
What is the value of x?
torisob [31]

Answer:

x=45^{o}

Step by step explanation:

We have been given that measure of angle A is fifty five degrees, the measure of angle B is eighty degrees and the measure of angle C is x.

Since we know that sum of measures of all the three angles of any triangle equals to 180 degrees.

Let us set sum of measures of all angles of our triangle equal to 180 degrees.

A+B+C=180^{o}

Upon substituting our given values in our equation we will get,

55^{o}+80^{o}+x=180^{o}

135^{o}+x=180^{o}

x=180^{o}-135^{o}

x=45^{o}

Therefore, the measure of angle x equals to 45 degrees.

3 0
4 years ago
Other questions:
  • Simplify to create an equivalent expression<br><br> -y minus -3(-3y+5)
    13·1 answer
  • The Science Club went on a two-day field trip. The first day the members paid $40 for transportation plus $18 per ticket to the
    11·1 answer
  • 2. In the circle graph above, you can see that 47% of the company's monthly income is used to pay the owner's personal salary. I
    10·1 answer
  • What is the y intercept of the linear equation x - 1/2y = -6
    15·2 answers
  • ANSWER QUICKLY PLZZZZZZ ASAP <br>READ QUESTIONS CAREFULLY ​
    12·1 answer
  • I tried using the standard deviation formula but still got the wrong answer. How would I solve this?
    6·2 answers
  • Add or subtract write your answer in simplest form
    9·1 answer
  • The point (3,-2) is rotated 90º counterclockwise about the origin and then dilated by a scale factor of 4. What are the coordina
    13·1 answer
  • ....Help Please......
    7·2 answers
  • Georgia has a budget of $8 for a new notebook. she wants to spend within $5 of her budget, so she uses the equation 0 = |8 − x
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!