Answer:
(a).
; (b). <em>33 to 40 </em>
Step-by-step explanation:
Use "magic fraction"
<em>(a).</em> Distance covered by runner is 33 yards
Whole distance is 40 yards
The portion of the race that the runner has completed is
<em>(b).</em> The portion of the race that the runner has completed is <em>33 to 40</em>
Answer:
I would say 135 would be the least three-digit number that is divisible by 3, 5, and 9.
Step-by-step explanation:
Answer:
slope of y = -7 is 0
Step-by-step explanation:
y = any number forms a graph of a horizontal line
x = any number forms a graph of a vertical line
For any horizontal line , the slope is always 0
for any vertical line , the graph is always undefined
So for y =-7 we will get a horizontal line at -7 on t
the slope of horizontal line y=-7 is 0
Answer:
n(-9+ n) =0
Step-by-step explanation:
-9n+n^2=0 Kind of use 'reverse distributive' property
n (-9 + n) = 0
<h2>f</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>x</h2><h2>3</h2><h2>−</h2><h2>9</h2><h2>x</h2><h2>2</h2><h2>+</h2><h2>24</h2><h2>x</h2><h2>−</h2><h2>10</h2><h2>Taking first derivative of</h2><h2> </h2><h2> </h2><h2>f</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>3</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>18</h2><h2>x</h2><h2>+</h2><h2>24</h2><h2>For finding critical points substituting</h2><h2> </h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2> </h2><h2>⇒</h2><h2>3</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>18</h2><h2>x</h2><h2>+</h2><h2>24</h2><h2>=</h2><h2>0</h2><h2> </h2><h2>⇒</h2><h2>3</h2><h2>(</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>6</h2><h2>x</h2><h2>+</h2><h2>8</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>(</h2><h2>x</h2><h2>−</h2><h2>4</h2><h2>)</h2><h2>(</h2><h2>x</h2><h2>−</h2><h2>2</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>After solving the value of x is</h2><h2>x</h2><h2>=</h2><h2>2</h2><h2>,</h2><h2>4</h2><h2>Thus critical points at</h2><h2> </h2><h2> </h2><h2>x</h2><h2>=</h2><h2>2</h2><h2>,</h2><h2>4</h2>