Answer:
there are 0.074 moles in 2.3 grams of phosphorus
The average mass of one H2O molecule is 18.02 amu. The number of atoms is an exact number, the number of mole is an exact number; they do not affect the number of significant figures. The average mass of one mole of H2O is 18.02 grams. This is stated: the molar mass of water is 18.02 g/mol.
Explanation:
The answer is JESUS BECAUSE HE IS ALWAYS THE ANSWER
Answer:
700 calories
Explanation:
Using the formula below:
Q = m × c × ∆T
Where;
Q = amount of heat required (calories)
m = mass of substance (g)
c = specific heat of substance (cal/g°C)
∆T = change in temperature (°C)
According to this question, the following information was provided;
Q = ?
m = 20g
c = 1.0 cal/g °C
∆T = 40°C - 5°C = 35°C
Using the formula; Q = m × c × ∆T
Q = 20 × 1 × 35
Q = 700 calories
Hence, 700 cal of heat energy is needed to raise 20 g of H2O from 5°C to 40°C.
First, let's compute the number of moles in the system assuming ideal gas behavior.
PV = nRT
(663 mmHg)(1atm/760 mmHg)(60 L) = n(0.0821 L-atm/mol-K)(20+273 K)
Solving for n,
n = 2.176 moles
At standard conditions, the standard molar volume is 22.4 L/mol. Thus,
Standard volume = 22.4 L/mol * 2.176 mol =<em> 48.74 L</em>