Answer:
P³⁻ + Cl⁻ --> PCl₃
Explanation:
PCl₃: phosphorus trichloride. prefix in front of chloride is "tri"–meaning three.
Answer:
Option A. 9.4 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 8 L
Initial temperature (T₁) = 293 K
Final temperature (T₂) = 343 K
Final volume (V₂) =?
V₁ / T₁ = V₂ / T₂
8 / 293 = V₂ / 343
Cross multiply
293 × V₂ = 8 × 343
293 × V₂ = 2744
Divide both side by 293
V₂ = 2744 / 293
V₂ = 9.4 L
Therefore, the final volume of the gas is 9.4 L
The answer is 35.4335
Hope this helped! (Plz mark me brainliest!)
Answer:
35Cl = 75.9 %
37Cl = 24.1 %
Explanation:
Step 1: Data given
The relative atomic mass of Chlorine = 35.45 amu
Mass of the isotopes:
35Cl = 34.96885269 amu
37Cl = 36.96590258 amu
Step 2: Calculate percentage abundance
35.45 = x*34.96885269 + y*36.96590258
x+y = 1 x = 1-y
35.45 = (1-y)*34.96885269 + y*36.96590258
35.45 = 34.96885269 - 34.96885269y +36.96590258y
0.48114731 = 1,99704989y
y = 0.241 = 24.1 %
35Cl = 34.96885269 amu = 75.9 %
37Cl = 36.96590258 amu = 24.1 %
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M