Answer:Diagram A
Explanation:
Since the air resistance is to be neglected, only the gravitational force acts on the ball ( and has acted all the way from the throw upward). Diagram A reflects this fact correctly indicating the gravity acting on the ball downward.
Answer: 0.392 m/s
Explanation:
The Doppler shift equation is:

Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the speed of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which are the red blood cells
Isolating
:


Finally:

Answer:
Wavelength of the x rays is 
Explanation:
It is given that,
The inter planer spacing between the crystal planes, 
The first-order maximum in the Bragg reflection occurs when the incident and reflected x rays make an angle of 39.4 degrees with the crystal planes. According to the Bragg's condition, the first-order maximum is given by :

n = 1



So, the wavelength of the x rays is
. Hence, this is the required solution.
Answer:
1.7 m
Explanation:
= Velocity of ball in x direction = 4.47 m/s
= Velocity of ball in y direction = 0
g = Acceleration due to gravity = 
t = Time taken
= Vertical displacement = 0.7 m

Horizontal displacement is given by

The passenger should throw the ball 1.7 m in front of the bucket.
Answer:We have , a relation in frequency f and wavelength λ of a wave having the velocity v as ,
v=fλ ,
given f=60Hz , λ=20m ,
therefore velocity of wave , v=60×20=1200m/s