Explanation:
The left side of the periodic table has elements that have less number of electrons in the valence shell.
These elements loose electrons easily.These elements appear as metals or metalloids in nature.These are hard solids.Their inter molecular forces are very strong.
The right side of the periodic table has elements that have more number of electrons in the valence shell.
These elements gain electrons easily.These elements appear as non metals most of which are gases.Their inter molecular forces are weak.
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction.
Answer:
In pair production, after the loss of Kinetic energy, the angular separation between the two photons is 180°.
Explanation:
- Pair production is the process of formation of two electrons, one negative and the other positive (positron), from a pulse of electromagnetic energy traveling through matter.
- It is a process of direct conversion of radiant energy to matter.
- The sum of the Kinetic energies of the formed particles amounts to a value of 4 MeV.
- When the kinetic energy is lost, emission of two photons, each with an energy of approximately 1 MeV in the form of gamma rays takes place ( in opposite direction).
Therefore, the angle of separation between the two photons is 180°.
Learn more about electromagnetic energy here:
<u>brainly.com/question/9221254</u>
#SPJ4
Answer:
0.893 rad/s in the clockwise direction
Explanation:
From the law of conservation of angular momentum,
angular momentum before impact = angular momentum after impact
L₁ = L₂
L₁ = angular momentum of bullet = + 9 kgm²/s (it is positive since the bullet tends to rotate in a clockwise direction from left to right)
L₂ = angular momentum of cylinder and angular momentum of bullet after collision.
L₂ = (I₁ + I₂)ω where I₁ = rotational inertia of cylinder = 1/2MR² where M = mass of cylinder = 5 kg and R = radius of cylinder = 2 m, I₂ = rotational inertia of bullet about axis of cylinder after collision = mR² where m = mass of bullet = 0.02 kg and R = radius of cylinder = 2m and ω = angular velocity of system after collision
So,
L₁ = L₂
L₁ = (I₁ + I₂)ω
ω = L₁/(I₁ + I₂)
ω = L₁/(1/2MR² + mR²)
ω = L₁/(1/2M + m)R²
substituting the values of the variables into the equation, we have
ω = L₁/(1/2M + m)R²
ω = + 9 kgm²/s/(1/2 × 5 kg + 0.02 kg)(2 m)²
ω = + 9 kgm²/s/(2.5 kg + 0.02 kg)(4 m²)
ω = + 9 kgm²/s/(2.52 kg)(4 m²)
ω = +9 kgm²/s/10.08 kgm²
ω = + 0.893 rad/s
The angular velocity of the cylinder bullet system is 0.893 rad/s in the clockwise direction-since it is positive.
Answer:
the formulae is f = mg = vpg