<u>Answer:</u> The mass of sodium chloride solution present is 0.256 grams.
<u>Explanation:</u>
We are given:
39.0 % of sodium in sodium chloride solution
This means that 39.0 grams of sodium is present in 100 grams of sodium chloride solution
Mass of sodium given = 100 mg = 0.1 g (Conversion factor: 1 g = 1000 mg)
Applying unitary method:
If 39 grams of sodium metal is present in 100 grams of sodium chloride solution
So, if 0.1 grams of sodium metal will be present in =
of sodium chloride solution.
Hence, the mass of sodium chloride solution present is 0.256 grams.
I dont know the answer sorry follow me for a follow back
The frequency of the radiation is equal to
Hertz.
<u>Given the following data:</u>
- Photon energy =
Joules
To find the frequency of this radiation, we would use the Planck-Einstein equation.
Mathematically, the Planck-Einstein relation is given by the formula:

<u>Where:</u>
Substituting the given parameters into the formula, we have;

Frequency, F =
Hertz
Read more: brainly.com/question/16901506
Answer: Common sources of error include instrumental, environmental, procedural, and human. All of these errors can be either random or systematic depending on how they affect the results. Make sure you have your problem, hypothesis, evidence, analyze the data, ask yourself if the evidence supports ur hypothesis, draw conclusions, and communicate your results!
Explanation:
Answer : Option A) Translation
Explanation : A composition of reflections over parallel lines is the same as a <u>Translation.</u>
To identify if the composition of reflections over parallel lines are same as translation or not?
We can check using a picture of some shape in the plane. Place the picture on the right side of two vertical parallel. Now, we can see the reflected the shape over the nearest parallel line, then check the reflection over the other parallel line. We see that the shape winds up in the same orientation, like it was just shifted over to the right. Hence, it is translation.