To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s
I really don’t know the answer, please help this kiddo with his question
Answer:
Approximately
under standard conditions.
Explanation:
Equation for the overall reaction:
.
Write down the ionic equation for this reaction:
.
The net ionic equation for this reaction would be:
.
In this reaction:
- Zinc loses electrons and was oxidized (at the anode):
. - Copper gains electrons and was reduced (at the cathode):
.
Look up the standard potentials for each half-reaction on a table of standard reduction potentials.
Notice that
is oxidation and is likely not on the table of standard reduction potentials. However, the reverse reaction,
, is reduction and is likely on the table.
The reduction potential of
would be
, the opposite of the reverse reaction
.
The standard potential of the overall reaction would be the sum of the standard potentials of the two half-reactions:
.