Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):

Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. this means that electromagnetic waves can travel not only trough air and solid materials, but also trough the vacuum of space.
Answer:
C) 100 joules
Explanation:
The kinetic energy of an object is given by:

where m is the mass of the object and v its speed.
In this problem, we have an object of mass m = 50 kg and v = 2 m/s, so by using the formula we can find its kinetic energy:

300 000 0 squared = 2 x 9.8 distance
KINEMATICS
Uniform or constant motion in a straight line (rectilinear). Speed or velocity constant and/or acceleration constant. If motion is up and down and/or has an up and down component then acceleration omn earth will be g. g is about 10m/s/s.
speed = distance/time
velocity = displacement/time
s=distance ... u=initial speed ... v = final speed ... a = acceleration ... t = time
v=u+at
v^2=u^2+2as
s=ut+1/2at^2