Let's calculate the average acceleration. It is the rate of changing speeds. Hence, we need to calculate the difference of speeds. 10-6=4 m/s. The rate is now
.
In general, the formula for the mean acceleration between two times 1 and 2 is given by:
where v1 and v2 are the speeds at the respective points and T is the time interval between them.
Answer:
(a) P = 459.055 N.
(b) the refrigerator tips.
Explanation:
Given, the angle of ramp is 20°.
When the weight of refrigerator is resolved in directions parallel and perpendicular to ramp, 75×g×sin(20°) and 75×g×cos(20°).
⇒ normal contact force is 75×g×cos(20°).
⇒ frictional force is 0.3×75×g×cos(20°) = 207.414 N
so, total opposite force is 207.414 + 75×g×sin(20°) = 459.055 N.
so, the force needed is P = 459.055 N
And as the moment due to both opposite force and P force are in same direction the refrigerator tips rather than just sliding.
Answer:
a) ΔV₁ = 21.9 V, b) U₀ = 99.2 10⁻¹² J, c) U_f = 249.9 10⁻¹² J, d) W = 150 10⁻¹² J
Explanation:
Let's find the capacitance of the capacitor
C =
C = 8.85 10⁻¹² (8.00 10⁻⁴) /2.70 10⁻³
C = 2.62 10⁻¹² F
for the initial data let's look for the accumulated charge on the plates
C =
Q₀ = C ΔV
Q₀ = 2.62 10⁻¹² 8.70
Q₀ = 22.8 10⁻¹² C
a) we look for the capacity for the new distance
C₁ = 8.85 10⁻¹² (8.00 10⁻⁴) /6⁴.80 10⁻³
C₁ = 1.04 10⁻¹² F
C₁ = Q₀ / ΔV₁
ΔV₁ = Q₀ / C₁
ΔV₁ = 22.8 10⁻¹² /1.04 10⁻¹²
ΔV₁ = 21.9 V
b) initial stored energy
U₀ =
U₀ = (22.8 10⁻¹²)²/(2 2.62 10⁻¹²)
U₀ = 99.2 10⁻¹² J
c) final stored energy
U_f = (22.8 10⁻¹²) ² /(2 1.04 10⁻⁻¹²)
U_f = 249.9 10⁻¹² J
d) the work of separating the plates
as energy is conserved work must be equal to energy change
W = U_f - U₀
W = (249.2 - 99.2) 10⁻¹²
W = 150 10⁻¹² J
note that as the energy increases the work must be supplied to the system
Fundamental States,
Non-classical States.
Solid,
Liquid,
Gas and
Plasma.