With each<span> passing </span>day<span>, the </span>high tides occur<span> about an </span>hour later<span>. The moon rises about an </span>hour later each day<span>, too (actually, 54 minutes </span>later<span>). Since the moon pulls up the </span>tides<span>, these two delays are connected. As the earth rotates through </span>one day<span>, the moon moves in its orbit.</span>
P1v1/t1 = p2v2/t2
p1=p2, v1=.2, t1=333, t2=533
we can find v2 from this
be aware, temperature must be in Kelvin.
Answer:
hope this helps!
Explanation:
Volume of the air bubble, V1=1.0cm3=1.0×10−6m3
Bubble rises to height, d=40m
Temperature at a depth of 40 m, T1=12oC=285K
Temperature at the surface of the lake, T2=35oC=308K
The pressure on the surface of the lake: P2=1atm=1×1.103×105Pa
The pressure at the depth of 40 m: P1=1atm+dρg
Where,
ρ is the density of water =103kg/m3
g is the acceleration due to gravity =9.8m/s2
∴P1=1.103×105+40×103×9.8=493300Pa
We have T1P1V1=T2P2V2
Where, V2 is the volume of the air bubble when it reaches the surface.
V2=
Answer:
The value of radiation pressure is
Pa
Explanation:
Given:
Intensity

Area of piece

From the formula of radiation pressure in terms of intensity,

Where
radiation pressure,
speed of light
We know value of speed of light,

Put all values in above equation,

Pa
Therefore, the value of radiation pressure is
Pa
I think it should be D as momentum is the product of mass and velocity...