Use Graphite on the wheel bearings and make an aero dynamic body and place the balloon at the back
Answer:
v = 4.4 m / s
Explanation:
Unfortunately, the exercise scheme does not appear. Let's analyze the problem the marble leaves point A with an initial velocity, goes down and then rises to a given height where its velocity is zero, in the whole trajectory they tell us that the resistance is zero, so we can use the conservation relations of the enegy.
Starting point. Point A
Em₀ = K + U = ½ m v2 + mg y_a
point B.
Em_f = U = m g y
the energy is conserved
Em₀ = Em_f
½ m v² + mg y_a = m g y
½ m v² = m g (y -y_a)
v =
In the exercise the diagram is not seen, but the height of point A must be known, suppose that y_a = 4 m
v =
v = 4.4 m / s
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction
The combustion of fossil fuels is releasing more co2 into the atmosphere then what would occur naturally
I just shot my shot at this little 52 ms far