Answer: 64.6 mmHg
Explanation:
Given that:
Volume of gas V = 3.47L
(since 1 liter = 1dm3
3.47L = 3.47dm3)
Temperature T = 85.0°C
Convert Celsius to Kelvin
(85.0°C + 273 = 358K)
Pressure P = ?
Number of moles of gas N = 0.100 mole
Note that Molar gas constant R is a constant with a value of 0.0082 ATM dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 3.47dm3 = 0.10 x (0.0082 atm dm3 K-1 mol-1 x 358K)
p x 3.47dm3 = 0.29 atm dm3
p = (0.29 atm dm3 / 3.47 dm3)
p = 0.085 atm
Recall that pressure of the gas is required in mm hg, so convert 0.085 atm to mm Hg
If 1 atm = 760 mm Hg
0.085atm = 0.085 x 760
= 64.6 mm Hg
Thus, the pressure of the gas is 64.6 mm hg
Hello!
The electron configuration for helium is 1s2
Answer: -
The experiment Niven is doing is burning of Mg.
The first step would be finding the molar mass of MgO
Atomic mass of Mg = 24 g
Atomic mass of Oxygen = 16 g
Molar mass of MgO = 24 x 1 + 16 x 1 = 40 g
The balanced chemical equation for this reaction is
2 Mg + O2 -- > 2MgO
From the balanced equation we see that
2 Mg gives 2 MgO
2 x24 g of Mg O gives 2 x 40 g of MgO.
28g of MgO gives

= 46.66 g of MgO.
Exothermic processes: Making ice cubes,formation of snow in clouds
Endothermic processe: Melting ice cubes, evaporation of water