Answer:
The particles that make up a substance in its liquid state have <u>more </u>kinetic energy than those of the same substance in its solid-state.
For a solid to melt, energy must be <u>added to</u> the system.
For a liquid to freeze, energy must be <u>removed from</u> the system.
Answer:
The Lewis structures are shown in the figure
Explanation:
The lewis structure will be drawn using following steps
i) we will calculate the total number of valence electrons in the molecule
ii) will assign one bond (two electrons in between two atoms)
iii) then distribute the rest of the valence electrons as lone pair or shared pair based on completion of octet.
The structure of each molecule is given in the figure.
Valence electrons:

V.E = 5 +(2)6-1=16

V.E =5 +(2)6+7=24
Answer:
8.934 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 192.12 44.01
H₃C₆H₅O₇ + 3NaHCO₃ ⟶ Na₃C₆H₅O₇ + 3H₂O + 3CO₂
m/g: 13.00
For ease of writing, let's write H₃C₆H₅O₇ as H₃Cit.
(a) Calculate the <em>moles of H₃Cit
</em>
n = 13.00 g × (1 mol H₃Cit /192.12 g H₃Cit)
n = 0.067 67 mol H₃Cit
(b) Calculate the <em>moles of CO₂
</em>
The molar ratio is (3 mol CO₂/1 mol H₃Cit)
n = 0.067 67 mol H₃Cit × (3 mol CO₂/1 mol H₃Cit)
n = 0.2030 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
m = 0.2030 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
m = 8.934 g CO₂
Answer:
It's d
Explanation:
They have two different meaning and jobs