Calculate the pressure due to sea water as density*depth.
That is,
pressure = (1025 kg/m^3)*((9400 m)*(9.8 m/s^2) = 94423000 Pa = 94423 kPa
Atmospheric pressure is 101.3 kPa
Total pressure is 94423 + 101.3 = 94524 kPa (approx)
The area of the window is π(0.44 m)^2 = 0.6082 m^2
The force on the window is
(94524 kPa)*(0.6082 m^2) = 57489.7 kN = 57.5 MN approx
Answer:
They will move the fridge if they all push in the same direction, but it will not move with constant velocity
Explanation:
The maximum static friction force is
(negative sign since its direction is opposite to the push applied by the people)
Sam can apply a force of 130 N, while Amir and Andre can apply a push of 65 N each, so the total force that they can apply, if they push in the same direction, will be:

This force is larger than the frictional force, so the fridge will start moving.
However, the net force on the fridge will be:

And according to Newton's second law,

where m is the mass of the fridge and a its acceleration, since the net force is not zero, then the fridge will have a non-zero acceleration, so it will not move with constant velocity.
Answer:
Data:-m=0.88kg ,g=9.8m/sec² ,P.E=96J ,h=?
Explanation:
solution ,P.E=mgh here we have to find h so h=P.E/mg ,h=96/0.88×9.8 ,h=96/8.624=11.131m and if you want to verify so just put the value of h in same formula, likewise :-P.E=mgh ,P.E=0.88×9.8×11.131=96J so we got the same value of P.E as it is given the question (verified).
Answer:
Given the exoticism of the orange fruit, you could be forgiven that the color came first as it naturally occurs independent of the fruit such as in sunsets or leaves in autumn. Orange actually comes from the Old French word for the citrus fruit - 'pomme d'orenge' - according to the Collins dictionary.
Explanation:
These two forces are called action and reaction forces and are the subject of Newton's third law of motion.
<em>Have a luvely day!</em>