Answer:
(a)0.531m/s
(b)0.00169
Explanation:
We are given that
Mass of bullet, m=4.67 g=
1 kg =1000 g
Speed of bullet, v=357m/s
Mass of block 1,
Mass of block 2,
Velocity of block 1,
(a)
Let velocity of the second block after the bullet imbeds itself=v2
Using conservation of momentum
Initial momentum=Final momentum







Hence, the velocity of the second block after the bullet imbeds itself=0.531m/s
(b)Initial kinetic energy before collision



Final kinetic energy after collision



Now, he ratio of the total kinetic energy after the collision to that before the collision
=
=0.00169
The snail’s speed is 0.001042. Hope this helps!
The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.
The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.
1 == toroid
2= solenoid
Answer:
Newton's second law of motion states that the acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system, and inversely proportional to its mass. In equation form, Newton's second law of motion is a=Fnetm a = F net m .
Explanation:
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.