Answer:
When C1 is labeled in glucose, it ends up in the methyl group of pyruvate.
Aldolase cleaves a hexose into two trioses.
[See the image attached].
Asterisk indicates the label.
When C1 is labeled in glucose, it ends up in the carboxyl group of pyruvate.
Explanation:
The problem basically wants you to find a way to convert between the number of atoms present in the sample and the number of moles they are equivalent to.
To convert between atoms and moles we use something called Avogadro's constant, which basically acts as the definition of a mole.
More specifically, in order to have one mole of an element you need
6.022 x 10^23 atoms of that element. You can thus use this number as a conversion factor to take you from atoms to moles or vice versa.
In your case, you will have
3.90 x 10^ 26 atoms Zn x 1 mole Zn ( Avogrado’s constant) / 6.022 x 10^23 atoms Zn
= 6.5 x 10^8 is the answer
Explanation:
sssddcvgggbbhgghhhhhhgggggggggggg
Answer:
The answer to your question is below
Explanation:
ionic compounds covalent compounds
1.- Mass it does not depend on the type of compound
2.- Conductivity -conduct electricity - do not conduct electricity
in solution.
3.- Color - Shiny - opaque
4.- Melting point - high - lower than ionic compounds
5.- Boiling point - high - lower than ionic compounds
6.- flammability - not flammable - flammable
Answer is: 12,6% (1/8) <span>percentage of the sample will remain.
</span>c₀ - initial amount of C-14.<span>
c - amount of C-14 remaining
at time.
t = 5700</span> y.<span>
First calculate the radioactive decay rate constant λ:
λ = 0,693 ÷ t = 0,693 ÷ 5700</span> y = 0,000121 1/y = 1,21·10⁻⁴ y.
c = c₀·e∧-λ·t.
c = 2000 · e∧-(0,000121 1/y · 17100 y).
c = 252 g.
ω = 252 g ÷ 2000 g = 0,126 = 12,6%.
<span>
</span>