The rate of the backward reaction increases
Explanation:
It is evident that if the reaction is left to proceed spontaneously, the forward reaction is favored because it results in a decrease in pressure in the system (The total reactants have 5 moles and the products have 3 in total).
Increasing H₂O concentration is then reaction, therefore, stymies the forward reaction and favors the reserves reaction. This is because the reverse reaction will lead to reduced pressure.
Answer: <em>Hopefully this helps! sorry if not. :))</em>
<em></em>
<em>Speed has a greater impact on mass because its increases in velocity have an exponentially greater impact on translational kinetic energy because kinetic energy is proportional to velocity squared. Doubling an object's mass would only double its kinetic energy, however doubling its momentum would quadruple its velocity.</em>
The answer is 40.
We can solve this by finding out the number of protons, and neutrons. Atomic number of an element means the number of protons in that element. So, the atom has 30 protons if the atomic number is 30.
On the other hand, mass number is the total number of protons and neutrons, but not electrons, because they're too light comparing to the other 2. Therefore, we can simply solve the number of neutrons in the atom by subtracting the number of protons from the mass number. 70 - 30 = 40.
Therfore, the number of neutrons is 40.
Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>