The definition of the word Kinetic molecular theory is the collection of several rules that describe the behavior of gases.
Perspex and polythene are good examples of insulators.
Answer:
1.16atm
Explanation:
We are going to derive the mass of ether from density
mass=density *volume
Also moles=mass/molecular mass
molar mass C2H5OC2H5 =74.12 g/mole
the density of ether is 0.7134 g/ml
mass C2H5OC2H5 = 5.30 ml x 0.7134 g/ml = 3.78 g
moles C2H5OC2H5 =3.78 g x 1 mole/74.12 g = 0.0509 moles
PV = nRT where P=?; n=0.0509 moles; V=6.50L; R=0.0821 Latm/Kmol; T=35ºC +273 = 308K
P = nRT/V = 0.0509)(0.0821)(308)/6.50
P = 0.198 atm (to 3 significant figures (this is the partial pressure of diethyl ether).
TOTAL PRESSURE
P1+p2+p3
= 0.198 atm + 0.750 atm + 0.207 atm =1.1550atm
1.16atm(3 significant figures)
Answer:
2Al(s) +3Ni²⁺(aq) ⟶ 2Al³⁺(aq) + 3Ni(s)
Explanation:
The unbalanced equation is
Al(s) + Ni²⁺(aq) ⟶ Ni(s) + Al³⁺(aq)
(i) Half-reactions
Al(s) ⟶ Al³⁺(aq) + 3e⁻
Ni²⁺(aq) + 2e⁻ ⟶ Ni(s)
(ii) Balance charges
2 × [Al(s) ⟶ Al³⁺(aq) + 3e⁻]
3 × [Ni²⁺(aq) + 2e⁻ ⟶ Ni(s)]
gives
2Al(s) ⟶ 2Al³⁺(aq) + 6e⁻
3Ni²⁺(aq) + 6e⁻ ⟶ 3Ni(s)
(iii) Add equations
2Al(s) ⟶ 2Al³⁺(aq) + 6e⁻
<u>3Ni²⁺(aq) + 6e⁻ ⟶ 3Ni(s) </u>
2Al(s) +3Ni²⁺(aq) + <em>6e</em>⁻ ⟶ 2Al³⁺(aq) + 3Ni(s) + <em>6e⁻
</em>
Simplify (cancel electrons)
2Al(s) +3Ni²⁺(aq) ⟶ 2Al³⁺(aq) + 3Ni(s)
<u>Answer:</u> The value of
for the reaction at 550.3 K is 247.83
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The chemical equation for the production of methanol follows:

The expression of
for above equation follows:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
We are given:
![[CH_3OH]=0.0401mol/L](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D0.0401mol%2FL)
![[CO]=0.02722mol/L](https://tex.z-dn.net/?f=%5BCO%5D%3D0.02722mol%2FL)
![[H_2]=0.07710mol/L](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.07710mol%2FL)
Putting values in above equation, we get:

Hence, the value of
for the reaction at 550.3 K is 247.83