Explanation:
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside [crystal]s. Water is often incorporated in the formation of crystals from aqueous solutions. ... Water of crystallization can generally be removed by heating a sample but the crystalline properties are often lost
Answer:
The answer is C. The high solvation energy for LI+
Explanation:
LiF has lower solubility because of the high solvation energy of Li+ ion. This is due to the smaller size and very big charge compared to Cs+ ion which has a bigger size and solvent molecules easily surround it.
Solvation energy is simply the amount energy that is required to make a solute dissolve in a solvent.
Answer:
0.550
Explanation:
The absorbance (A) of a substance depends on its concentration (c) according to Beer-Lambert law.
A = ε . <em>l</em> . c
where,
ε: absorptivity of the species
<em>l</em>: optical path length
A 45 mM phosphate solution (solution A) had an absorbance of 1.012.
A = ε . <em>l</em> . c
1.012 = ε . <em>l</em> . 45 mM
ε . <em>l</em> = 0.022 mM⁻¹
We can find the concentration of the second solution using the dilution rule.
C₁ . V₁ = C₂ . V₂
45mM . 11mL = C₂ . 20.0 mL
C₂ = 25 mM
The absorbance of the second solution is:
A = (ε . <em>l</em> ). c
A = (0.022 mM⁻¹) . 25 mM = 0.55 (rounding off to 3 significant figures = 0.550)
Answer: Option (b) is the correct answer.
Explanation:
The given chemical reaction shows that hydrogen cyanide acid has been added to water which results in the formation of hydronium ion and cyanide ion.
Also, when we add a base like sodium hydroxide (NaOH) to HCN then it will help in accepting a proton (
) from hydrogen cyanide. As a result, formation of
anion will be rapid and easy.
This will make the system not to do any extra work. So, amount of work done by system will decrease.
Thus, we can conclude that out of the given options, add solid NaOH to the reaction (assume no volume change) will decrease the amount of work the system could perform.