Answer: 5.85kJ/Kmol.
Explanation:
The balanced equilibrium reaction is

The expression for equilibrium reaction will be,
![K_p=\frac{[p_{D}]\times [p_{C}]}^4{[p_{B}]^2\times [p_{A}]}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5Bp_%7BD%7D%5D%5Ctimes%20%5Bp_%7BC%7D%5D%7D%5E4%7B%5Bp_%7BB%7D%5D%5E2%5Ctimes%20%5Bp_%7BA%7D%5D%7D)
Now put all the given values in this expression, we get the concentration of methane.


Relation of standard change in Gibbs free energy and equilibrium constant is given by:

where,
R = universal gas constant = 8.314 J/K/mole
T = temperature = 
= equilibrium constant = 10.6



Thus standard change in Gibbs free energy of this reaction is 5.85kJ/Kmol.
The answer is Nona-9, penta- is five, hexa- is six, and deca- is ten.
Answer:
d. N
Explanation:
Chemical equation:
Pb(NO₃)₂(aq) + K₂SO₄(aq) → PbSO₄(s) + KNO₃(aq)
Balanced Chemical equation:
Pb(NO₃)₂(aq) + K₂SO₄(aq) → PbSO₄(s) + 2KNO₃(aq)
Ionic equation:
Pb²⁺(aq) + 2NO₃⁻(aq) + 2K⁺(aq) + SO₄²⁻(aq) → PbSO₄(s) + 2K⁺(aq) + 2NO₃⁻(aq)
Net ionic equation:
Pb²⁺(aq) + SO₄²⁻(aq) → PbSO₄(s)
The NO₃⁻(aq) and K⁺(aq)are spectator ions that's why these are not written in net ionic equation. The PbSO₄ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.