Molarity = Moles/Liter
Use the molecular atomic mass of NaCl to convert from grams to moles.
Molecular mass of NaCl is the sum of its atomic masses. Look at the periodic table to find these. Na is 23 g/mol and Cl is 35.5 g/mol ,
so NaCl = 23 + 35.5 = 58.5 g/mol
multiply to cancel out grams
76 g NaCl * (1mol / 58.5 g NaCl) = 1.3 mol NaCl
over 1 Liter is just 1.3 M NaCl
Hope this helps!
double-displacement reaction
Explanation:
We have the chemical reaction:
Na₂S (aq) + Cd(NO₃)₂ (aq) → CdS (s) + 2 NaNO₃ (aq)
where:
(aq) - aqueous
(s) - solid
This is a double-displacement reaction because the reactants exchange atoms or group of atoms between themselves to form the products. To drive the reaction to the right, one of the products is a precipitate.
Generally we can express the double-displacement reaction as following:
AB + CD → AC + BD
Learn more about:
types of chemical reactions
brainly.com/question/13824617
#learnwithBrainly
K₃PO₄ → 3K⁺ (aq) + PO₄³⁻(aq)
One mole of PO₄³⁻ ion gets dissociated from one mole of K₃PO₄
As per the definition of Avogadro's number, 1 mole = 6.022 x 10²³ ions
One mole of PO₄³⁻ ions x (6.022 x 10²³ ions/ 1 mole of PO₄³⁻ ions )
= 6.022 x 10²³ ions
Therefore , there are 6.022 x 10²³ PO₄³⁻ ions in a mole of K₃PO₄.
The pH scale is used to measure the degree of acidity or alkalinity of a solution. The scale runs from 0 (very acidic solutions can have a negative pH) to 14 (very alkaline solutions can have a pH higher than this), while a neutral liquid such as pure water has a pH of 7. The pH is linked to the concentration of hydrogen ions (H +) in the solution. Diluting an acid or alkali affects the concentration of H +<span> ions in a solution and therefore affects the pH. In this activity, we will investigate how diluting an acid or alkali affects the pH.
Hope this helps:D
Have a great rest of a brainly day!</span>
Answer:

Explanation:
Here, we wnat to get the most electronegative atom
On the periodic table, electronegativity increases across a period and decrease down the group
The elements listed are in the same group
Boron is the first member of the group
Boron is the most electronegative atom in the group