1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
14

Which of the following statements is true?

Physics
1 answer:
maksim [4K]3 years ago
8 0
There are NO true statements on the list you provided.
You might be interested in
Suppose that a block of mass 2 kg is pulled to the right with a force of 10 N, and the friction force on the block is directed t
Law Incorporation [45]

Answer:

The block has an acceleration of 3 m/s^{2}

Explanation:

By means of Newton's second law it can be determine the acceleration of the block.

\sum F_{r} = ma   (1)

Where \sum F_{r} represents the net force, m is the mass and a is the acceleration.

F_{x} + F{y} = ma  (2)

The forces present in x are F = 10 N and f = 4 N (the friction force):

F_{x} = 10 N - 4 N

Notice that f subtracts to F since it is at the opposite direction.

F_{x} = 6 N

The forces present in y balance each other:

F_{y} = 0

Therefore:

6 + 0 = ma  

6 N = (2kg)a  (3)

But 1 N = 1 Kg.m/s^{2} and writing (3) in terms of a it is get:

a = \frac{6 Kg.m/s^{2}}{2 Kg}  

a = 3 m/s^{2}

So the block has an acceleration of a = 3 m/s^{2}.

4 0
3 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
A flashing red traffic light at an intersection means
k0ka [10]
Just do what u would do if u were at a stop sign 
5 0
4 years ago
Hey, I need help can someone help me out, please?
yan [13]

Explanation:

6) newton

7) f =ma = 15*15 = 225N

8) a= 100/20 = 5ms^-2

6 0
3 years ago
Read 2 more answers
Which of the following is NOT an important function of the components of the muscular system?
polet [3.4K]

D. Vitamin storage.            

3 0
3 years ago
Read 2 more answers
Other questions:
  • What represents acceleration on a velocity vs. time graph
    10·1 answer
  • The loudness of a sound is related to the ___________ of the vibration that produces the sound.
    13·1 answer
  • To calculate the wavelength of a wave, take the wave speed and divide by the frequency of the wave. true or false
    11·1 answer
  • The western shoreline of a continent in the Northern Hemisphere runs directly in a north-south direction. Prevailing winds blowi
    10·2 answers
  • Why is object 2 accelerating while object 1 remains stationary?
    10·1 answer
  • WILL GIVE BRAINLIEST ANSWER!!!!!!!!!!!!!!!!!!!!!!!!! ITS WORTH 99 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    11·2 answers
  • A solid sphere rolls along a horizontal, smooth surface at a constant linear speed without slipping. What is the ratio between t
    5·1 answer
  • The law of conservation of mass states that
    11·1 answer
  • A 0.650 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it w
    13·1 answer
  • Two spheres have a gravitational force between
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!