Answer:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Explanation:
For this case we know the mass of the water given :

And we know that the initial temperature for this water is
.
We want to cool this water to the human body temperature 
Since the temperatures given are not near to 0C (fusion point) or 100C (the boling point) we don't need to use latent heat, then the only heat involved for this case is the sensible heat given by:

Where
represent the specific heat for the water and this value from tables we know that
for the water.
So then we have everything in order to replace into the formula of sensible heat and we got:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Answer:
4.6 years
Explanation:
This is solved using Kepler's third law which says:

Where
T = Orbital period of the planet (in seconds)
a = Distance from the star (in meters)
G = Gravitational constant
M = Mass of the parent star (in kg)
From the information given



We put this into Kepler's law and get:

This when converted to years is 4.6 years.
Answer:
Because of immense gravity
Explanation:
The formation of the Solar system was a very dynamic process. A lot of matter was thrown towards the outer solar system which further formed the Gas giants: Jupiter, Saturn, Uranus, and Neptune. The size of these outer planets is huge so is their gravity.
Because of their huge gravity a lot of matter which was scattered in the outer solar system got attracted towards them. This matter is what make the rings of the outer planets. Also, because of immense gravity they captured larger bodies thus making them their Moons.
Explanation:
There are two components of a longitudinal sound wave which are compression and rarefaction. Similarly, there are two components of the transverse wave, the crest, and trough.
The crest of a wave is defined as the part that has a maximum value of displacement while the trough is defined as the part which corresponds to minimum displacement.
While compression is that space where the particles are close together while the rarefaction is that space where the particles are far apart from each other.
So, the refraction or the rarefied part of a longitudinal sound wave is analogous to a trough of a transverse wave.
Ans; see attached file for calculation and answer
Explanation: