Answer:
Option A is correct.
(The faster object encounters more resistance)
Explanation:
Option A is correct. (The faster object encounters more resistance)
Air resistance depends on various factors:
- Speed of the object
- Cross-sectional area of the object
- Shape of the object
Formula:

As the speed of the object increases the amount of Air resistance/drag increases on the object, as the above formula shows direct relation between Air resistance/drag and velocity i.e F ∝ v^2.
Speed is distance over time, learn that formula and look at the image
Reading a book in your warm, comfy seat ... in Row-27 of a
passenger airliner cruising at 450 miles per hour.
Answer:
0.278 m/s
Explanation:
We can answer the problem by using the law of conservation of momentum. In fact, the total momentum before the collision must be equal to the total momentum after the collision.
So we can write:

where
m = 0.200 kg is the mass of the koala bear
u = 0.750 m/s is the initial velocity of the koala bear
M = 0.350 kg is the mass of the other clay model
v is their final combined velocity
Solving the equation for v, we get
