1- first law
2- third law
3- first law
4- second law
5- third law
6- second law
Answer:
Q = 836.4 Joules.
Explanation:
Given the following data;
Mass = 100 grams
Initial temperature = 25°C
Final temperature = 45°C
We know that the specific heat capacity of water is equal to 4.182 J/g°C.
To find the quantity of heat;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 45 - 25
dt = 20°C
Substituting the values into the equation, we have;
Q = 836.4 Joules.
Answer: a. 667N
b. 665N
c. 54.5N
Explanation:
a) on the surface of the earth
W = mg
W = 68 × 9.81
= 667N
b) at the top of Everest (8848 m above sea level).
W =mg × R²/(R + H)²
W = 667 × [6378²/(6378 + 8.848)²
W = 665N
c) has 2 1/2 times the radius of the earth
W = mg × R²/(R + H)²
W = 667 × R²/(R + 2.5R)²
W = 54.5N
The answer to this question is: it depends. It depends on the arrangement of the capacitors in a circuit: it can be either in series or in parallel. The difference is shown in the picture.
Capacitors are like batteries in a way that they store power from the source. It has some rules depending on the type of circuit. For parallel circuits, the voltage across each capacitor is equal. Therefore, V₁=V₂=V₃.
On the other hand, if the capacitors are arranged in series, the voltage across each capacitor should add up to the total voltage of the source. Therefore, V₁+V₂+V₃ = Total Voltage.
Answer:
3.036×10⁻¹⁰ N
Explanation:
From newton's law of universal gravitation,
F = Gm1m2/r² .............................. Equation 1
Where F = Gravitational force between the balls, m1 = mass of the first ball, m2 = mass of the second ball, r = distance between their centers.
G = gravitational constant
Given: m1 = 7.9 kg, m2 = 6.1 kg, r = 2.0 m, G = 6.67×10⁻¹¹ Nm²/C²
Substituting into equation 1
F = 6.67×10⁻¹¹×7.9×6.1/2²
F = 321.427×10⁻¹¹/4
F = 30.36×10⁻¹¹
F = 3.036×10⁻¹⁰ N
Hence the force between the balls = 3.036×10⁻¹⁰ N