Answer:
Intensive properties
Density
Color
temperature
Melting point
Extensive properties
Mass
Volume
Total Energy
Explanation:
Intensive properties: In Physics, Intensive properties which are not depend of the amount of matter in a sample, It only depends of the type of matter, some examples of intensive properties are:
1. Density: It is a intensive property. It can explain better with a example: the water density is 1000 kg/m3, So if we have 1 liter or 1000 liters of water the density will be the same for the two samples.
2. Color: Solid sodium chloride is white. If you have 2 samples the first recipient with 2 kilograms of NaCl and the second with 10 kilograms of NaCl. The color of the substance does not depend on the amount of the substance.
As was mentioned before the same theory is applied to temperature and melting point concepts.
On the other hand,
Extensive properties are properties of the matter which depend on the amount of matter that is present in the system or sample. some examples are:
1. Mass: It is a property that measures the amount of matter that an object contains. For example, 10 kilograms of solid Copper contains a higher mass than 2 kilograms of the same metal.
2. Volume: It is a property which measures the space occupied by an object or a substance. For example, the space occupied by a glass of milk is lower than the space occupied by a bottle of milk, Then the volume of the glass of milk is lower than the volume of the bottle of milk.
3. Finally the total energy is contained in molecules and atoms that constituted systems so, if the amount of matter increases the number of molecules too, then the total energy will increase.
I hope it helps you.
Objects that let in light and blurry images are translucent.
Translucent is a term that refers to an adjective. This characteristic is the property of an object to allow the passage of light, without allowing visibility with high clarity through it.
This term is often confused with transparency. However, they differ because a transparent object lets light through easily and allows you to see clearly through it.
According to the above, objects that allow light to pass through but do not allow clear vision are translucent.
Learn more in: brainly.com/question/10626808
You use more significant figures. 5 sigfigs (1.0985) is more accurate than 2 sigfigs (1.0)
Answer:
Plzzzzzzzzzzzzzzzz brainliest
Explanation:
In static friction, the frictional force resists force that is applied to an object, and the object remains at rest until the force of static friction is overcome. In kinetic friction, the frictional force resists the motion of an object. ... The frictional force itself is directed oppositely to the motion of the object.
Answer:
0.8712 m/s²
Explanation:
We are given;
Velocity of first car; v1 = 33 m/s
Distance; d = 2.5 km = 2500 m
Acceleration of first car; a1 = 0 m/s² (constant acceleration)
Velocity of second car; v2 = 0 m/s (since the second car starts from rest)
From Newton's equation of motion, we know that;
d = ut + ½at²
Thus,for first car, we have;
d = v1•t + ½(a1)t²
Plugging in the relevant values, we have;
d = 33t + 0
d = 33t
For second car, we have;
d = v2•t + ½(a2)•t²
Plugging in the relevant values, we have;
d = 0 + ½(a2)t²
d = ½(a2)t²
Since they meet at the next exit, then;
33t = ½(a2)t²
simplifying to get;
33 = ½(a2)t
Now, we also know that;
t = distance/speed = d/v1 = 2500/33
Thus;
33 = ½ × (a2) × (2500/33)
Rearranging, we have;
a2 = (33 × 33 × 2)/2500
a2 = 0.8712 m/s²