Momentum = mass x velocity
So both mass and velocity affect an object's momentum.
You'll never get the correct answer without the correct conversion factor. Note carefully that you have no decimal. It should be
<span>1 km = 0.6214 miles </span>
<span>1000 m = 1 km </span>
<span>60 seconds = 1 minute </span>
<span>60 minutes = 1 hour. </span>
<span>2.998E8 m/s x (1 km/1000m) x (0.6214 miles/km) x (60 sec/min) x (60 min/hr) = ?</span>
Explanation:
It is given that,
The acceleration of the toboggan,
Initial speed of the toboggan, u = 0
We need to find the distance covered by the toboggan. Using the second equation of motion as :
At t = 1 s
At t = 2 s
At t = 3 s
Hence, this is the required solution.
Answer:
Hence, work done= 287.54 J
Explanation:
Given data:
angle of ramp with the ground θ =20°
force applied = 76 N
work done on the crate to slide down 4 m down the ramp
W= F×d cosθ ( only the cos component of the force will slide the crate down)
W= 76×4×cos20= 287.54 J