Answer:
Enthalpy change for the reaction is -67716 J/mol.
Explanation:
Number of moles of
in 50.0 mL of 0.100 M of 
= Number of moles of HCl in 50.0 mL of 0.100 M of HCl
=
moles
= 0.00500 moles
According to balanced equation, 1 mol of
reacts with 1 mol of HCl to form 1 mol of AgCl.
So, 0.00500 moles of
react with 0.00500 moles of HCl to form 0.00500 moles of AgCl
Total volume of solution = (50.0+50.0) mL = 100.0 mL
So, mass of solution = (
) g = 100 g
Enthalpy change for the reaction = -(heat released during reaction)/(number of moles of AgCl formed)
=
= ![\frac{-100g\times 4.18\frac{J}{g.^{0}\textrm{C}}\times [24.21-23.40]^{0}\textrm{C}}{0.00500mol}](https://tex.z-dn.net/?f=%5Cfrac%7B-100g%5Ctimes%204.18%5Cfrac%7BJ%7D%7Bg.%5E%7B0%7D%5Ctextrm%7BC%7D%7D%5Ctimes%20%5B24.21-23.40%5D%5E%7B0%7D%5Ctextrm%7BC%7D%7D%7B0.00500mol%7D)
= -67716 J/mol
[m = mass, c = specific heat capacity,
= change in temperature and negative sign is included as it is an exothermic reaction]
Answer:
the volume occupied by 3.0 g of the gas is 16.8 L.
Explanation:
Given;
initial reacting mass of the helium gas, m₁ = 4.0 g
volume occupied by the helium gas, V = 22.4 L
pressure of the gas, P = 1 .0 atm
temperature of the gas, T = 0⁰C = 273 K
atomic mass of helium gas, M = 4.0 g/mol
initial number of moles of the gas is calculated as follows;

The number of moles of the gas when the reacting mass is 3.0 g;
m₂ = 3.0 g

The volume of the gas at 0.75 mol is determined using ideal gas law;
PV = nRT

Therefore, the volume occupied by 3.0 g of the gas is 16.8 L.
Answer:
How many 250 mg tablets of metronidazole are needed to make 150 mL of suspension containing
100 mg/mL?
a. 25
b. 30
c.50
d. 60
Explanation:
<em>if </em><em> </em><em>mali </em><em>po </em><em>I'm</em><em> </em><em>so </em><em>sorry</em>