As we know that, molecular mass of ferric oxide, Fe2O3, is 159.69 grams.
Out of which, iron contributes 111.69 g (2 X 55.845 g) and oxygen contributes
48 g (3 X 16 g).
Each gram of iron (III) oxide contains 111.69/159.69 g of iron and 48/159.69
g of oxygen.
To produce 1000 g iron (III) oxide we need,
Iron = 111.69*1000/159.69 = 699.42 g
Oxygen = 48*1000/159.69 = 300.58 g
The hot molecules around the heat source expands, becomes less dense, then rises. When it rises, the cooler molecules moves down to take its place. This can occur in fluid, which include gas or liquid.
Answer:
Grow plants where little light is available
Explanation:
The plants need the ultraviolet rays in order to be able to survive and develop. The need mainly comes from the dependence of these rays for production of food, in a process known as photosynthesis. The plants are producers, thus they create their own food. In order to be able to do that they are using the ultraviolet rays, as well as water, and carbon dioxide. By combining them, the plants manage to create glucose for them, and that is their food source. The plants that are kept at places where there's not enough light are often exposed to ultraviolet rays so that they are able to perform the process of photosynthesis and grow properly.
M = 10.0 g, the mass of the iron sample
ΔT = 75 - 25.2 = 49.5°C, the decrease in temperature
c = 0.449 J/(g-°C), the specific heat of iron
The heat released is
Q = m*c*ΔT
= (10.0 g)*(0.449 J/(g-°C))*(49.5 C)
= 222.255 J
Answer: 222.3 J (nearest tenth)