Answer:
P= 454.11 N
Explanation:
Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N
The answer is false, your welcome.
For E = 200 gpa and i = 65. 0(106) mm4, the slope of end a of the cantilevered beam is mathematically given as
A=0.0048rads
<h3>What is the slope of end a of the cantilevered beam?</h3>
Generally, the equation for the is mathematically given as

Therefore
A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}
A=0.00288+0.00192=0.0048rads
A=0.0048rads
In conclusion, the slope is
A=0.0048rads
Read more about Graph
brainly.com/question/14375099
I'm assuming the question is time it will take for ball to reach ground, if it is then set equation to zero then use the quadratic formula, the possible t value is your answer then
Answer:
288.0 units; that is the electrostatic force of attraction become quadruple of its initial value.
Explanation:
If all other parameters are constant,
Electrostatic Force of attraction ∝ (1/r²)
F = (k/r²) = 72.0
If r₁ = r/2, what happens to F₁
F₁ = (k/r₁²) = k/(r/2)² = (4k/r²) = 4F = 4 × 72 = 288.0 units