<h3>
Answer:</h3>
382.63 K
<h3>
Explanation:</h3>
We are given;
- Volume of Iodine as 71.4 mL
- Mass of Iodine as 0.276 g
- Pressure of Iodine as 0.478 atm
We are required to calculate the temperature of Iodine
- We are going to use the ideal gas equation;
- According to the ideal gas equation; PV = nRT, where R is the ideal gas constant, 0.082057 L.atm/mol.K.
T = PV ÷ nR
But, n, the number of moles = Mass ÷ Molar mass
Molar mass of iodine = 253.8089 g/mol
Thus, n = 0.276 g ÷ 253.8089 g/mol
= 0.001087 moles
Therefore;
T = (0.478 atm × 0.0714 L) ÷ (0.001087 moles × 0.082057)
= 382.63 K
Thus, the temperature of Iodine in Kelvin is 382.63 K
Answer:
0.54g of Cr
Explanation:
Current (I) = 10A
Time (t) = 100s
Molecular mass of Cr = 51.996 amu
Faraday's first law of electrolysis states that
The mass of the substance (m) of a given substance deposited at an electrode is directly proportional to the quantity of electricity or charge (Q) passed
m = nQ
M = mass of the substance
n = electrochemical constant
Q = charge passed through it
Q = IT
Q = (10 * 100) = 1000C
1 moles = molarmass = Faraday's constant (96500C)
Molar mass = Faraday's constant (96500C)
51.996 g = 96500C
How many grams will be liberated with 1000C
51.996g = 96500C
Xg = 1000C
X = (1000 * 51.996) / 96500
X = 51996 / 96500
X = 0.5388g = 0.54 g of Cr will be deposited
Well one characteristic gases and the state of matter(one of the distinct form i which matter exist)
Answer:
118.75°C is the boiling point of a solution.
Explanation:
Mass of the solute that is barbiturates = 42.5 g
Molar mass of a solute = 184.2 g/mol
Moles of solute = 
Mass of the solvent that acetic acid = 825 g = 0.825 kg

Molality of the solution (m):

Elevation in boiling point is given as:

i = 1 (organic compound)


= Boiling temperature of solution.
T = boiling temperature of solvent that is acetic acid=117.9°C


118.75°C is the boiling point of a solution.
The procedure for this is the next one:
moles CaC2 = 485 g/64.1 g/mol=7.57
<span>moles H2O = 2 x 7.57 =15.1 </span>
<span>mass H2O = 15.1 mol x 18.02 g/mol=272.8 g
</span>